

# Sizing and Optimizing PV/BESS Around Fossil Fuel Gensets / Load Demand for Remote Locations

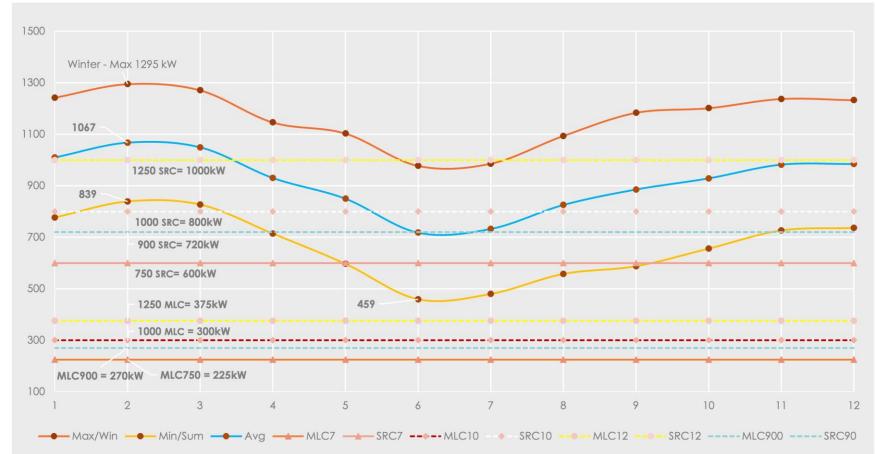






We considered the following to achieve the listed objectives:

- Energy sources can make or break any community, and remote communities and mining sites are not exceptions.
- Traditional energy resources are scarce and import costs can be very high. Fossil Fuel Gensets (FFG) are commonly employed in these areas. Distribution systems are often weak.
- RE (PV, Wind) is a viable solution, at least as a mix, sometimes supported with BESS. However, RE/PV incorporation requires detailed analysis and due diligence.
- A cost-effective solution is usually sought that maximizes RE/PV penetration while keeping system V and f profiles in check.
- Primary Objective:
- Maximize RE/PV
- Keep V/f profiles in limit
- Minimize Pollution


Additional Objectives for the Solution:

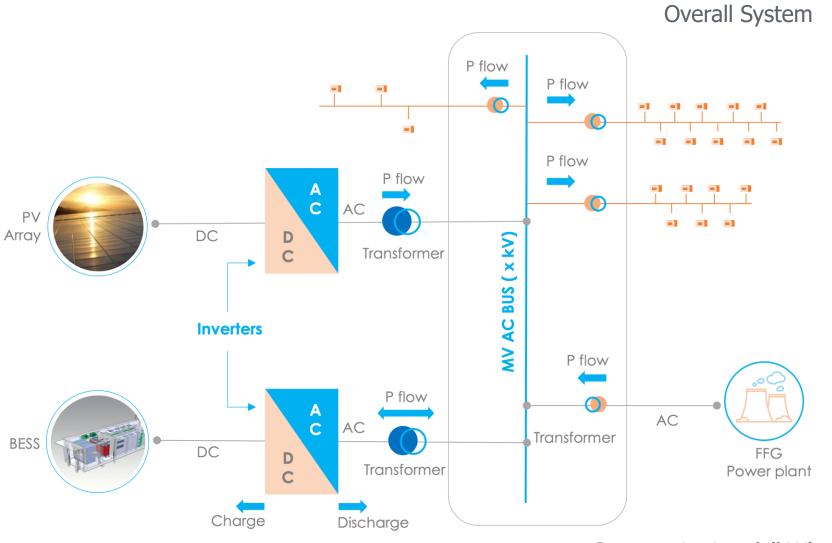
- Effective
- Efficient
- Economical
- Reliable
- Safe (Code Compliant / Industry Standards)

- Present FFG generation capacity and Community Load
- Future FFG generation requirement and Community Load
- Min and Max Load @ Seasons
- Spinning Reserve Requirement (SRC)
- Minimum Load Constraints (MLC)
- Min Generation/Load to avoid FFG Wet Stacking
- Min On/Off Cycles
- Battery Storage / Dump load
- FFG / Load / PV Complementarity
- PV Maximization / FF Minimization
- Minimum Control Requirements

### **RESULTS**

#### FFG: 750kW & 900kW (1650kW/3 FFG (N-1=900 kW)/SRC 1320 kW/Staggered SRC?) PV System: 3 Orientations




| Orientation | Option - I | Option - II | Std System |
|-------------|------------|-------------|------------|
| South       | 200 kW     | 360 kW      | 600 kW     |
| South East  | 200 kW     | 120 kW      | 0          |
| South West  | 200 kW     | 120 kW      | 0          |
| DC/AC Ratio | 1.2        | 1.2         | 1.2        |

### PV System Generation

| PV System  | Option - I | Option - II | Std System         |
|------------|------------|-------------|--------------------|
| Pk Inst. P | 167 kW     | 300 kW      | 500 kW             |
| Yearly E   | 632 MW     | 647 MW      | 640 MW             |
|            | Low        | Low - Med   | Medium-High        |
| Control    | No - Slim  | Moderate    | Complex            |
| Remarks    | Ok         | Possible    | Not<br>Recommended |



| FFG     | +PV Sys       | Std Design               | Option - I                  | Option - II              | Ref. Design            |
|---------|---------------|--------------------------|-----------------------------|--------------------------|------------------------|
|         | -             |                          |                             |                          |                        |
| FFG     | Sizes         | 420-450, 750, 2 x 900 kW | 420-450, 750, 2 x 900 kW    | 420-450, 750, 2 x 900 kW | 2 x 550kW + 2 x 750 kW |
|         | #             | 4 or 3 (Recommended)     | 4 or 3 (Recommended)        | 4 or 3 (Recommended)     | 4                      |
|         | Туре          | Continuous + 3 Prime     | Continuous + 3 Prime        | Continuous + 3 Prime     | Continuous             |
| PV      | Size          | 600kWdc-max/500kWac      | 600kWdc-max/500kWac         | 600kWdc-max/500kWac      | 600kWdc-max/500kWac    |
|         | Deployment    | 1                        | 1/1/1                       | 1/3/1                    | 1                      |
|         | Inverters     | 5 (100 kW) – 20 (25 kW)  | 5 (100 kW) – 20 (25 kW)     | 5 (100 kW) – 20 (25 kW)  | 5 (100 kW)             |
| tional  | DL            | Yes                      | No                          | No                       | Yes                    |
|         | BES           | Yes (20–60 min @ MOOT)   | No / Yes (20 min MOOT)      | No / Yes (20 min @ MOOT) | Yes (60 min)           |
|         | MLC+          | No / Yes (as required)   | Yes                         | Yes                      | No / Yes (as required) |
|         | SRC           | Yes                      | Yes                         | Yes                      | Yes                    |
|         | моот          | No / Yes                 | No                          | No                       | Yes                    |
|         | Chargers/Inv  | 5 (100 kW) – 20 (25 kW)  | No / 3 (100 kW) – 8 (25 kW) | 5 (100 kW) – 20 (25 kW)  | 5 (100 kW )            |
| Remarks | Energy (Est.) | 640 MW                   | 632 MW                      | 647 MW                   | 640 MW                 |
|         | Effectiveness | Fair                     | Good                        | Good                     | Poor                   |
|         | Efficiency    | Fair                     | Good                        | Good                     | Poor                   |
|         | Reliability   | Fair                     | Good                        | Good                     | Poor                   |
|         | Economical    | No                       | Yes                         | Yes                      | No                     |
|         | Recommend     | May be                   | Yes                         | Yes                      | No                     |



#### Community Load (kW)

| Month | Max@2023 | Min@2023 | Max@2038 | Min@2038 |
|-------|----------|----------|----------|----------|
| Jan   | 1036     | 648      | 1225     | 766      |

# CONCLUSIONS

The Options I and II are promising solutions but Option II with higher generation wins.

The following were targeted and achieved successfully:

- Present FFG generation capacity and Community Load
- Min and Max Load @ Seasons
- Minimum Load Constraints (MLC)
- Min On/Off Cycles
- FFG / Load / PV Complementarity
- Minimum Control Requirements
- Future FFG generation requirement and Community Load
- Spinning Reserve Requirement (SRC)
- Min Generation/Load to avoid FFG Wet Stacking
- Battery Storage / Dump load
- PV Maximization / FF Minimization

### Additional - E<sup>3</sup>RS

- Economical
- Effective
- Efficient
- Reliable
- Safe by Design &
- Code Compliance

### Plus

- Maintainable (No BESS)
- Complementary

## REFERENCES

### **CONTACT INFORMATION**

• F. Katiraei and C. Abbey "Diesel Plant Sizing and Performance Analysis of a Remote Wind-Diesel Microgrid", 2007 IEEE Power Engineering Society General Meeting, 24-28 June 2007

• I. M. Syed, "Near-optimal standalone hybrid PV/WE system sizing method", Solar Energy 157, 727-734

• E. Muljadi, C. Wang, M.H. Nehrir, "Parallel operation of wind turbine, fuel cell, and diesel generation sources", Power Engineering Society General Meeting, 2004. IEEE

Dr. Irtaza Syed, P. Eng., Manager Bop, RRC Power & Energy, Round Rock, TX, 78681, USA; irtazasyed@rrccompanies.com Ben Davis, PE Director Bop, RRC Power & Energy, Round Rock, TX, 78681, USA; bendavis@rrccompanies.com Yi Meng Vice President Electrical, RRC Power & Energy, Round Rock, TX, 78681, USA; yimeng@rrccompanies.com