
Operational Assessment: Impact of Wind Direction 
Modeling on Estimating Directional Curtailment Deficit

ABSTRACT
Aiming to expand the market viability of wind farms as sustainable and bankable 
energy sources, accurate resource modeling, thorough micrositing in complex 
terrains, and precise energy yield assessment are crucial for maximizing 
operational performance.

During wind farm development, a common practice to enhance competitiveness is 
to increase installed capacity by adding turbines or enlarging rotor size for 
improved efficiency, which frequently involves reducing the spacing between wind 
turbines within the targeted resource area. However, effective wind sector 
management (WSM) may be necessary to mitigate fatigue loads caused by ambient 
and wake-induced turbulence from neighboring turbines over a 20-35 year 
operational lifetime.

A performance benchmarking of wind direction modeling methodologies for 
long-term production estimation was conducted and compared with SCADA 
operational data from an onshore wind farm with closely-spaced turbines located in 
highly complex terrain in the northeastern region of Brazil. The results validate 
more suitable methodologies and provide valuable insights into maximizing 
operational performance and minimizing energy losses.

CONCLUSIONS
Figure 2 shows the overall mean error and RMSE (root mean square error) of 
estimated WSM losses by adopting different long-term adjustment methods and 
wind resource maps in comparison to the operational data. The following key 
conclusions can be drawn:

● The LT WS+WD method (full long-term adjustment for both speed and 
direction) consistently outperforms the LT WS only method (long-term 
adjustment of speed only), irrespective of the chosen wind resource map or the 
number of directional sectors used for resource extrapolations.

● The wind resource model with the lowest overall mean error is Meso2, closely 
followed by the CFD1 and CFD2 models when using the LT WS+WD method.

● The 36-sector Linear model displays the lowest RMSE, followed by all other 
models with a comparable degree of accuracy when using the LT WS+WD 
method. However, the number of directional sectors has a minimal impact, 
given the WSM loss assessment relies on time series calculation in this study.

Overall, the most cost-effective configuration favors the LT WS+WD method in 
conjunction with the 12-sector Meso2 model. While CFD models are 
acknowledged for their capacity to describe wind resources in complex terrains (5), 
they come with higher computational costs. On the other hand, the Linear method 
is unsuitable for evaluating highly complex terrains (6) which tends to impact the 
wind direction horizontal extrapolation.

The results of this study hold valuable implications for wind farm developers, 
offering opportunities to improve the accuracy of WSM deficit estimations. This, in 
turn, can lead to more effective optimization of turbine placement and amount, 
resulting in increased energy production and prolonged operational lifespans.

METHODS
According to Figure 1 and the previous study (2), a row of turbines from an operating wind farm in the 
northeastern region of Brazil was selected to meet the following criteria: having wind turbines with active WSM 
strategies, being unaffected by the wake effects of neighboring turbine rows, and having local measurements of 
at least three years before the start of operation.

The operational WSM losses were derived from SCADA (Supervisory Control and Data Acquisition) that were 
filtered to ensure all turbines were in a fully operational state. These data were collected over a complete year to 
mitigate seasonal bias. Additionally, residual losses due to WSM curtailment hysteresis were disregarded to 
ensure a fair comparison with modeled losses.

The comparison contrasts the results of two long-term adjustment methods in the time series of resource 
variables. Method LT WS only: wind speed adjustment for the long-term from a linear regression of a reanalysis 
series with the best correlation coefficient and simply measured wind direction. Method LT WS+WD: full 
long-term adjustment (speed and direction) using the same reanalysis series that delivers the best Pearson linear 
correlation to wind speed and Jammalamadaka-Sarma circular correlation (3) to wind direction. The long-term 
direction adjustment was performed with circular regression (4).

Furthermore, the speed-ups of the long-term adjusted time series to the turbines’ positions were carried out 
using five distinct wind resource maps discretized into 12 direction sectors: 2 mesoscales (Meso1 and Meso2) 
from different providers, 2 Computational Fluid Dynamics (CFD) models employing different solver parameters 
and grid systems (CFD1 and CFD2), and a linear extrapolation model (Linear). The Meso2 and Linear models 
were also compared using 36 sectors.

In agreement with the conclusion of a previous study (2), the method for estimating WSM losses was solely 
based on time series due to its superior accuracy in estimating WSM losses with appropriate computational cost.

RESULTS

OBJECTIVES
The variability in the average wind direction within an onshore wind farm arises 
from terrain complexity and the influence of seasonal along with medium to 
long-term climatological cycles (1). Considering that, and aiming to optimize 
micrositing to account for wind direction impacts (besides mean wind speed), it is 
imperative to adjust the collected wind direction data to accurately reflect the usual 
20-35 years of operational lifespan. This imperative is complemented by the need 
for a wind resource modeling approach capable of spatially extrapolating wind 
direction statistics or time series from the available measurement coordinates.

Enhancing wind direction modeling can mitigate uncertainties in the estimation of 
losses associated with WSM strategy, thereby refining the accuracy of wind turbine 
positioning and quantity selection for the purpose of optimizing energy production.

In this context, the study conducts a comparative analysis of WSM deficits derived 
from wind direction modeling that, in turn, is based on measured data obtained 
before the operational phase. Additionally, the study involves spatial extrapolation 
of this variable achieved via statistical adjustments to wind resource maps from five 
different sources.
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Figure 1: Studied turbine row. Circles filled in blue 
highlight turbines with WSM enabled: 16 of 25. 
Note: real north is anonymized.

Figure 2: (a) RMSE and (b) Overall mean error of WSM losses compared to operational 
curtailment deficit (ignoring losses due to hysteresis).


