MUSC Health Medical University of South Carolina

ABSTRACT

Introduction

The widely accepted treatment of primary trigeminal neuralgia (PTN) is microvascular decompression of the trigeminal nerve root, although other less-invasive interventions are available. We aim to comprehensively compare the efficacy of MVD as well as the proportions of procedure failure, reoperation, and complications to less-invasive procedures. Methods

A literature search was conducted from February to May 2023 in accordance with PRISMA recommendations using PubMed, Medline, and Scopus to identify studies comparing MVD to other interventions for PTN. Interventions included for meta-analysis were percutaneous balloon microcompression (PBC), radiofrequency rhizotomy (RFR), and stereotactic radiosurgery (SRS). All subjects were diagnosed with primary trigeminal neuralgia and were surgically naive. The Barrow Neurological Institute (BNI) Pain Intensity Score was used to determine procedure success or failure. Demographic information, reported complications, and re-operation were also recorded. Outcomes were reported as single means and proportions which were meta-analyzed and compared at a 95% confidence interval.

Results

Seventeen studies were included for analysis with a total of 2756 patients. Pain relief was greatest in MVD and PBC. Procedure failure was lowest in MVD and PBC. The proportion of post-operative complications was greater following MVD compared to both RFR and SRS but less than that of PBC. Although the complications reported after MVD carry the highest morbidity. Conclusions

The authors conclude that patients undergoing MVD or PBC were more likely to experience a successful outcome than patients undergoing RFR or SRS. Efficacy of MVD supports literature proposing neurovascular compression as etiology of primary trigeminal neuralgia. However, the equally high efficacy of PBC suggests that it should be considered as an initial treatment option for patients with trigeminal neuralgia. PBC has a less severe complication profile while being less expensive and less invasive.

Keywords: Trigeminal Neuralgia, Tic Douloureux, Microvascular Decompression, Stereotactic Radiosurgery, Percutaneous Balloon Microcompression, Radiofrequency Rhizotomy

INTRODUCTION

Trigeminal neuralgia (TN), also known as tic douloureux, is characterized by recurrent, shortlasting episodes of extreme pain in the distribution of the fifth cranial nerve.¹ The pain quality is described as sharp, stabbing, shooting, or electric shock-like. Pain is often triggered by activities of daily living such as talking, chewing, and eating or specific movement, most commonly gently touching the face.¹ Poor quality of life and increased incidence of suicide is described in these patients.² TN is a rare condition with an overall prevalence of <0.1% of the general population with a significant female predominance.³ Primary trigeminal neuralgia (PTN) excludes etiologies of multiple sclerosis, brainstem lesions, or mass lesion. The proposed etiology of PTN is neurovascular compression of the trigeminal nerve root by an aberrant arterial or venous loop.⁸ First line medical therapy for TN is carbamazepine and oxcarbazepine - anti-epileptic drugs that block voltage gated sodium channels.⁷ There is converging evidence that the pain is caused by demyelination of the trigeminal sensory fibers in the nerve root.⁹ In patients that either fail or are intolerant to medical therapy - surgical options are available.

Microvascular decompression, first proposed in 1965 by Dr. Peter Janetta, is the first-line option for medically refractory trigeminal neuralgia in patients that have neurovascular compression confirmed by imaging and can tolerate major surgery.⁸ Other, less invasive options are available such as percutaneous ganglion lesions, percutaneous balloon microcompression, or stereotactic radiosurgery. Efficacy of microvascular decompression of the affected trigeminal nerve branch likely confirms an etiology of neurovascular decompression. However, this etiology is debated.

Given that microvascular decompression is invasive and requires craniotomy, we aim to analyze the efficacy and complications of MVD as compared to less-invasive procedures for the treatment of PTN. Many surgeons recommend less-invasive procedures for older patients or patients that would be less tolerable to general anesthesia or craniotomy.¹⁰

Figure 1. PRISMA Flow Diagram

	Identification of studies via databases and registers					
Identification	Studies identified from Pubmed, SCOPUS, and MEDLINE: Databases (n = 1093)	Studies removed <i>before screening</i> : Duplicate records removed (n = 503)				
	Studies screened	Studies excluded				
	(n = 590)	(n = 477)				
	Studies sought for retrieval	Studies not retrieved				
ing	(n = 112)	(n = 0)				
Screening	•					
S	Full-text studies assessed for eligibility	Studies excluded (n=95):				
	(n = 112)	Patients received prior intervention (n=35)				
		Wrong interventions compared (n = 17)				
	Studies included in review	Study unavailable in English language (n = 14)				
Included	(n = 17)	Not primary trigeminal neuralgia (n=12)				
]	Wrong study design/review study (n=11)				
		Desired outcomes not reported (n=6)				

Search Criteria: This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses ('PRISMA') guidelines. We completed our search using PubMed, subsequently Medline, and Scopus to identify prospective studies, retrospective studies, and randomized controlled clinical trials that compared microvascular decompression to another, less-invasive surgical intervention for PTN. A combination of subject headings (e.g., Medical Subject Headings [MeSH] in PubMed) and the following keywords were used in the search: 'Trigeminal Neuralgia', 'Microvascular Decompression', 'Percutaneous Balloon Microcompression', 'Stereotactic Radiosurgery', 'Radiofrequency Rhizotomy', etc.. Databases were searched from the date of inception through March 9, 2023, with a filter to exclude publications written in a language other than English. The review management software, Covidence (Veritas Health Innovation Ltd, Melbourne, Australia), was utilized for study screening and selection. Titles and abstracts were screened for relevance and study design, then full texts were reviewed to determine inclusion. References of all included articles and similar systematic reviews were examined for additional citations.

Statistical Methods: Meta-analysis of single means were performed by Comprehensive Meta-Analysis version 3 (Biostat Inc., Englewood, NJ, USA). Meta-analysis of proportions and single means was performed using MedCalc 20.218 (MedCalc Software Ltd., Ostend, Belgium). Each measure was weighted according to the number of patients affected. The weighted-summary proportion was calculated by the Freeman–Tukey transformation. Heterogeneity among studies was assessed using χ^2 and I² statistics. I² < 50% indicated acceptable heterogeneity, and, therefore, the fixed-effects model was used. Otherwise, the random-effects model was performed. A p-value of <0.05 was considered to indicate a statistically significant difference for comparisons of proportions and single means.

Chaves 2021
Dai 2016
Gao 2017
Hitchon 2016
Holland 2015
Ichida 2015
Inoue 2017

Laghmari 20

Li 2020

Linskey 2008

Nanda 2015

Ni 2020

Noorani 202

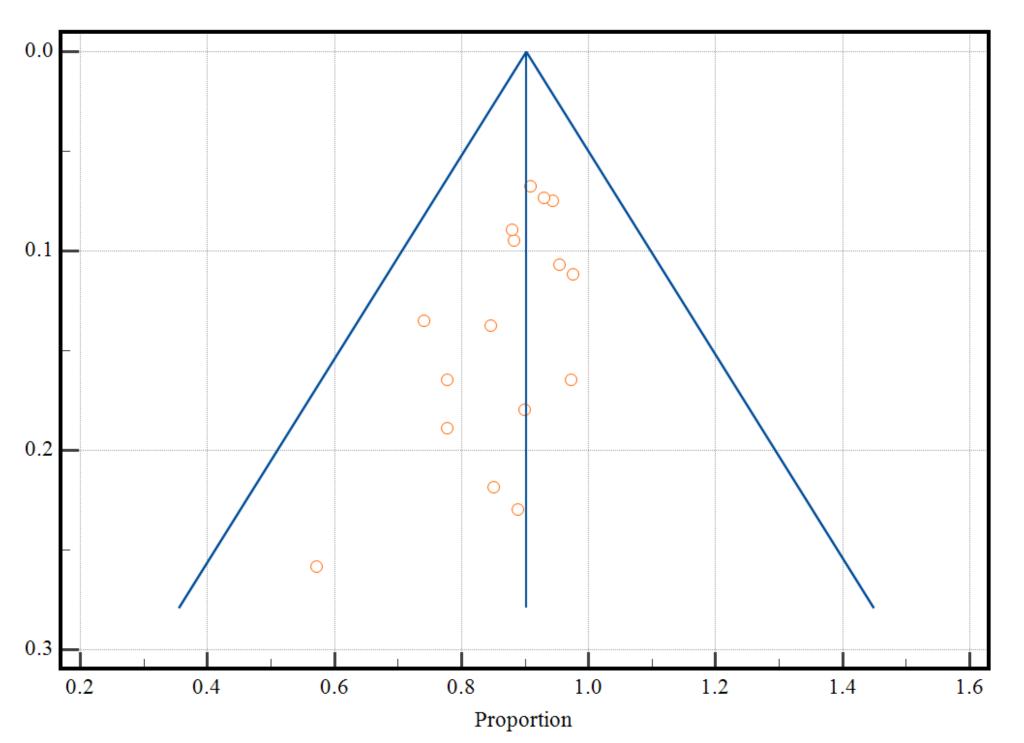
Raygor 2020

Ritter 2009

Yu 2019

Zeng 2018

Total


Microvascular Decompression Versus Less-Invasive Interventions for Primary Trigeminal Neuralgia : A Systematic Review and Meta-Analysis William A. Meadows Jr., BS¹, Mary Prickett, BS¹, Shaun A Nguyen, MD, FAPCR², Robert F. Labadie, MD, Ph.D.²

College of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2 Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA

METHODS

Table 1. General Study Characteristics							
	Country	Oxford Level of Evidence	Total Number of Patients (n)	Percent Male (%)	Mean Age (years)	Mean Pre-Op Disease Course (months)	Surgical Interventions Compared
1	Brazil	4	37	32.432	-	-	MVD, PBC
	China	3	202	44.554	58.0	-	MVD, SRS
	China	2	117	41.880	48.37	75.84	MVD, PSR
6	United States	3	195	37.436	57.0	-	MVD, RFR, SRS
5	United States	4	89	-	53.9	-	MVD, RFR, SRS
	Brazil	3	48	-	49.17	72	MVD, PBC
	Japan	3	231	35.498	62.0	-	MVD, SRS
07	Morocco	4	165	50.909	50.0	-	MVD, PBC, RFR
	United States	4	214	-	60.0	-	MVD, SRS
8	United States	3	80	41.250	53.8	83.64	MVD, SRS
	United States	4	69	33.333	-	-	MVD, SRS
	China	4	60	41.667	62.52	-	MVD, PBC
1	United Kingdom	3	314	43.949	58.5	-	MVD, PBC, CR, RFR
)	United States	3	193	34.715	72.2	98.8	MVD, MVD + PSR, SRS
	United States	4	108	42.593	58.0	-	MVD, RFR
	China	4	193	47.150	-	-	MVD, MVD + PSR, SRS
	China	2	441	42.404	56.0	-	MVD, SRS
	-	-	2756	41.590	62.537	67.043	-

Figure 2. Funnel Plot of Studies Included for Analysis of Pain Relief in Microvascular Decompression

Comp

RESULTS

Table 2. Results of Meta-Analysis of Single Means and Proportions

PBC 65.454 61.987	RFR 70.523	SRS 70.676
	70.523	70.676
61.987		
	60.000	83.615
72.000	81.496	32.780
25.073	36.628	41.370
56.548	52.446	57.132
87.256	57.352	73.746
93.271	-	78.588
14.408	36.583	24.664
6.729	-	21.412
25.219	8.389	2.340
75.153	58.466	21.779
-	54.033	18.106
-	-	7.03
-	-	1.57
	25.073 56.548 87.256 93.271 14.408 6.729 25.219 75.153	72.000 81.496 25.073 36.628 56.548 52.446 87.256 57.352 93.271 - 14.408 36.583 6.729 - 75.153 8.389 75.153 54.033 - - - - - - - - - - - - - - - - - - - - - -

Table 3. Comparison of Single Means and Proportions: MVD versus PRC

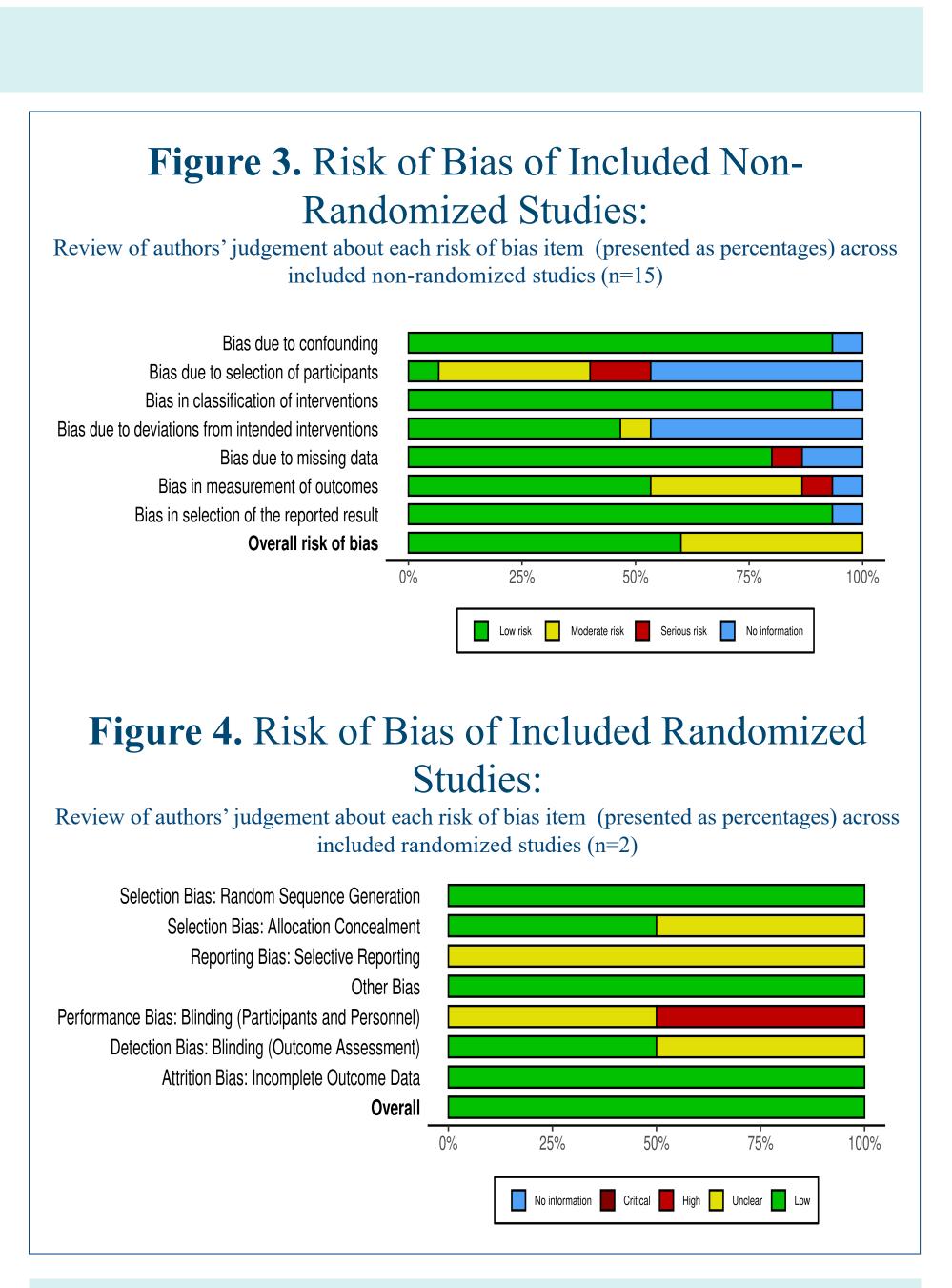

nificance Level: p-Value <0.05		L L				
	MVD	РВС	Δ	Confidence Interval (95%)	p-Value	
Age (Years)	57.298	65.454	8.156	6.6894 to 9.6225	<0.0001*	
Pre-Op Disease Course ls)	58.543	61.987	3.444	-9.4572 to 16.3452	0.6004	
Follow-Up (Months)	35.321	72.000	36.69	30.605 to 42.775	<0.0001*	
nt Male (%)	42.072	25.073	16.9990	10.7878 to 22.6131	<0.0001*	
f Pain (% Right)	58.007	56.548	1.4590	-8.5781 to 11.9414	0.7835	
elief (%)	88.370	87.256	1.1140	-4.6384 to 9.8251	0.7533	
0p BNI I/II/III (%)	90.668	93.271	2.6030	-7.2334 to 7.1609	0.5114	
dure Failure (%)	12.138	14.408	2.2700	-2.8236 to 8.988	0.4242	
0p BNI IV/V (%)	9.332	6.729	2.6030	-7.2334 to 7.1609	0.5114	
red Reoperation (%)	9.565	-	-	-	-	
ication Rate (%)	13.497	25.219	11.7220	3.8868 to 21.3549	0.0015*	
0p Numbness Rate (%)	8.331	75.153	66.8220	57.2016 to 74.5038	<0.0001*	

Table 4. Comparison of Single Means and Proportions: MVD versus RFR *Significance Level: p-Value <0.05

nincance Level. p-value	<0.05					
	MVD	RFR	Δ	Confidence Interval (95%)	p-Value	
Age (Years)	57.298	70.523	13.225	12.0146 to 14.4354	<0.0001*	
n Pre-Op Disease Course ths)	58.543	60.000	1.457	-11.3708 to 14.2848	0.8236	
n Follow-Up (Months)	35.321	81.496	46.175	42.0501 to 50.2991	<0.0001*	
ent Male (%)	42.072	36.628	5.4440	-0.1969 to 10.8877	0.0584	
of Pain (% Right)	58.007	52.446	5.5610	-2.3731 to 13.5545	0.1724	
Relief (%)	88.370	57.352	31.0180	23.3379 to 38.986	<0.0001*	
Op BNI I/II/III (%)	90.668	-	-	-	-	
edure Failure (%)	12.138	36.583	24.4450	18.3207 to 30.9102	<0.0001*	
Op BNI IV/V (%)	9.332	-	-	-	-	
ired Reoperation (%)	9.565	54.033	44.46830	35.37011 to 53.10441	<0.0001*	
plication Rate (%)	13.497	8.389	5.1080	0.5702 - 8.5959	0.0288*	
Op Numbness Rate (%)	8.331	58.466	50.1350	42.6287 to 57.2297	<0.0001*	

Table 5. Comparison of Single Means and Proportions: MVD versus CDC

*Significance Level: p-Value	<0.05	SKS			
	MVD	SRS	Δ	Confidence Interval (95%)	p-Value
Mean Age (Years)	57.298	70.676	13.378	12.6071 to 14.1488	<0.0001*
Mean Pre-Op Disease Course (Months)	58.543	83.615	25.072	19.2407 to 30.9033	<0.0001*
Mean Follow-Up (Months)	35.321	32.780	2.541	-4.6822 to 3.3998	0.0201*
Percent Male (%)	42.072	41.370	0.7020	-3.7045 to 5.0812	0.0976
Side of Pain (% Right)	58.007	57.132	0.8750	-4.2079 to 5.9688	0.7368
Pain Relief (%)	88.370	73.746	14.6240	11.2455 to 18.0608	<0.0001*
Post-Op BNI I/II/III (%)	90.668	78.588	12.0800	8.6501 to 15.634	<0.0001*
Procedure Failure (%)	12.138	24.664	12.5260	9.1334 to 16.0042	<0.0001*
Post-Op BNI IV/V (%)	9.332	21.412	12.0800	8.6501 to 15.634	<0.0001*
Required Reoperation (%)	9.565	18.106	8.5410	3.7298 to 13.4085	0.0005*
Complication Rate (%)	13.497	2.340	11.1570	8.9915 to 13.2926	<0.0001*
Post-Op Numbness Rate (%)	8.331	21.779	13.4480	10.041 to 16.9753	<0.0001*

CONCLUSION

To our knowledge, this is the first comprehensive meta-analysis to date of the published literature comparing microvascular decompression to all other commonly performed surgical procedures as a treatment for primary trigeminal neuralgia. We analyzed the post-operative pain relief, procedure failure rates, as well as complication and numbress rates of MVD and three other, less-invasive surgical procedures. We conclude that post-operative pain relief was highest in MVD and PBC while procedure failure rates were lowest in these procedures. MVD and PBC also had the highest rates of complications. Complications of MVD have a higher morbidity than those of PBC. We conclude that PBC is equally as efficacious and safe although it may result in more minor complications than MVD. Given the lower cost, time of operation, and time of recovery of PBC it should be considered in the initial surgical intervention for patients with trigeminal neuralgia

REFERENCES

- 1. Cruccu G, Di Stefano G, Truini A. Trigeminal Neuralgia. (1533-4406 (Electronic)) 2. Zakrzewska JM, Wu J Fau - Mon-Williams M, Mon-Williams M Fau - Phillips N, Phillips N Fau - Pavitt SH, Pavitt SH. Evaluating the impact of trigeminal neuralgia. (1872-6623 (Electronic)) 3. De Toledo Ip Fau - Conti Réus J, Conti Réus J Fau - Fernandes M, Fernandes M Fau - Porporatti AL, et al. Prevalence of trigeminal neuralgia: A systematic review. (1943-4723 (Electronic)) 4. Maarbjerg S, Gozalov A, Olesen J, Bendtsen L. Trigeminal Neuralgia – A Prospective Systematic Study of Clinical Characteristics in 158 Patients. https://doi.org/10.1111/head.12441. Headache: The Journal of Head and Face Pain. 2014/11/01 2014;54(10):1574-1582.
- doi:https://doi.org/10.1111/head.12441 5. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. *Cephalalgia*. 2018/01/01 2018;38(1):1-211. doi:10.1177/0333102417738202 6. Truini A, Prosperini L, Calistri V, et al. A dual concurrent mechanism explains trigeminal neuralgia in patients with multiple sclerosis. (1526-632X (Electronic)) 7. Bendtsen L, Zakrzewska JM, Abbott J, et al. European Academy of Neurology guideline on trigeminal neuralgia. <u>https://doi.org/10.1111/ene.13950</u>. European Journal of Neurology. 2019/06/01 2019;26(6):831-849. doi: https://doi.org/10.1111/ene.13950 8. Kaufmann AM, Price AV. A history of the Jannetta procedure. Journal of Neurosurgery JNS. 01 Feb. 2020 2020;132(2):639-646.
- doi:10.3171/2018.10.JNS181983 9. Love S, Coakham HB. Trigeminal neuralgia: pathology and pathogenesis. (0006-8950 (Print))
- 10. Bick SKB, Eskandar EN. Surgical Treatment of Trigeminal Neuralgia. (1558-1349 (Electronic)) 11. Young JN, Wilkins RH. Partial sensory trigeminal rhizotomy at the pons for trigeminal neuralgia. Journal of Neurosurgery. 01 Jan. 1993 1993;79(5):680-687. doi:10.3171/ins.1993.79.5.0680 12. Lambru G, Zakrzewska J, Matharu MA-O. Trigeminal neuralgia: a practical guide. (1474-7766 (Electronic)) 13. Page MA-O, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. (1756-1833
- (Electronic)) 14. Rogers CL, Shetter Ag Fau - Fiedler JA, Fiedler Ja Fau - Smith KA, Smith Ka Fau - Han PP, Han Pp Fau - Speiser BL, Speiser BL. Gamma knife radiosurgery for trigeminal neuralgia: the initial experience of The Barrow Neurological Institute. (0360-3016 (Print))
- 15. Group OLoEW. The Oxoford Levels of Evidence 2. 2011. 16. Higgins JP, Altman Dg Fau - Gøtzsche PC, Gøtzsche Pc Fau - Jüni P, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. (1756-1833 (Electronic)) 17. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. (1756-1833 (Electronic)) 18. Lee A, McCartney S Fau - Burbidge C, Burbidge C Fau - Raslan AM, Raslan Am Fau - Burchiel KJ, Burchiel KJ. Trigeminal neuralgia occurs and recurs in the absence of neurovascular compression. (1933-0693 (Electronic)) 19. Mooney J, Erickson N, Pittman B, Agee BS, Guthrie BL. The Use of MRI in Preoperative Decision-Making for Trigeminal Neuralgia: A Single-Center
- Study. (1878-8769 (Electronic)) 20. Alizadeh Y, Hayak H, Khoshnevisan A. Microvascular Decompression Versus Gamma Knife Surgery in Patients with Drug-Resistant Trigeminal Neuralgia: A Systematic Review and Meta-Analysis. (1878-8769 (Electronic)) 21. Barker FG, 2nd, Jannetta Pj Fau - Bissonette DJ, Bissonette Dj Fau - Larkins MV, Larkins MV Fau - Jho HD, Jho HD. The long-term outcome of microvascular decompression for trigeminal neuralgia. (0028-4793 (Print))
- 22. Noorani I, Lodge A Fau Vajramani G, Vajramani G Fau Sparrow O, Sparrow O. Comparing Percutaneous Treatments of Trigeminal Neuralgia: 19 Years of Experience in a Single Centre. (1423-0372 (Electronic)) 23. Xia YA-O, Yu G, Min FA-O, Xiang H, Huang J, Leng J. The Focus and New Progress of Percutaneous Balloon Compression for the Treatment of Trigeminal Neuralgia. (1178-7090 (Print)) 24. Herta J, Schmied T, Loidl TB, et al. Microvascular decompression in trigeminal neuralgia: predictors of pain relief, complication avoidance, and lessons
- learned. (0942-0940 (Electronic)) 25. Sivakanthan S, Van Gompel Jj Fau - Alikhani P, Alikhani P Fau - van Loveren H, van Loveren H Fau - Chen R, Chen R Fau - Agazzi S, Agazzi S. Surgical management of trigeminal neuralgia: use and cost-effectiveness from an analysis of the Medicare Claims Database. (1524-4040 (Electronic))