

Bao Y. Sciscent, BS¹, Hanel W. Eberly, BS¹, F. Jeffrey Lorenz MD¹, Nguyen Truong, BS¹, David Goldenberg MD FACS¹, Neerav Goyal MD MPH FACS¹ ¹ Penn State Milton S. Hershey Medical Center – Department of Otolaryngology – Head and Neck Surgery, Hershey, PA 17033

Introduction

- Thyroidectomy is one of the most common procedures performed with very low mortality rates.
- Complications of thyroidectomy have been reported to be associated with the extent of resection, surgeon expertise, institutional case volume, advanced patient age, and comorbidities such as hypertension and diabetes.
- Studies have suggested malnutrition, as measured by serum albumin, as a predictor of poor surgical outcomes in neurosurgical, plastic and constructive, and gastrointestinal surgeries.
- Albumin is considered a negative active-phase protein that typically decreases during injury and inflammatory conditions. However, little is known about the significance of pre-operative hypoalbuminemia.
- **Objective**: To leverage a large healthcare research database to determine adverse 30-day post-operative outcomes associated with pre-operative hypoalbuminemia in patients who underwent thyroidectomy.

Pre-operative serum albumin as a predictor of outcomes after Thyroidectomy

Results

2113 patients were identified in each cohort.						
Characteristics	Hypoalbuminemia (Cohort 1), n (%)	Non- hypoalbuminemia (Cohort 2), n (%)	Standard Difference			
Age at Index	53.9± 15.6 years	53.6± 15.4 years				
Female	1535 (72.65%)	1566 (74.11%)	0.033			
Not Hispanic or Latino	1459 (69.05%)	1453 (68.77%)	0.006			
White	1338 (63.32%)	1340 (63.42%)	0.002			
Black or African American	459 (21.72%)	475 (22.48%)	0.018			
Unknown Ethnicity	330 (15.62%)	311 (14.72%)	0.025			
Hispanic or Latino	324 (15.33%)	349 (16.52%)	0.032			
Unknown Race	237 (11.22%)	210 (9.94%)	0.042			
Asian	64 (3.03%)	71 (3.36%)	0.019			
American Indian or Alaska Native	12 (0.57%)	14 (0.66%)	0.012			
Native Hawaiian or Other Pacific Islander	10 (0.47%)	10 (0.47%)	0.000			

Table 1. Baseline demographics.

Outcomes	Hypoalbuminemia, (Cohort 1), n (%)	Non- Hypoalbuminemia (Cohort 2), n (%)	Odds Ratio (95% CI)	p-value
Mortality	24 (1.136%)	<u><</u> 10 (0.473%)	2.416 (1.153-5.056)	0.0159*
Pneumonia	48 (2.272%)	17 (0.805%)	2.866 (1.643-5.00)	.0001
Acute Renal Failure	73 (3.455%)	30 (1.42%)	2.485 (1.617-3.817)	<.0001
DVT/PE	48 (2.272%)	30 (1.42%)	1.614 (1.019-2.557)	0.0397
Sepsis	30 (1.42%)	13 (0.615%)	2.327 (1.21-4.473)	0.0092
Surgical Site Infection (SSI)	29 (1.372%)	<u><</u> 10 (0.473%)	2.926 (1.423-6.02)	0.0022*
Tracheostomy	21 (0.994%)	<u><</u> 10 (0.473%)	2.111 (0.992-4.494)	0.0474*
Respiratory Dependence	23 (1.088%)	<u><</u> 10 (0.473%)	2.314 (1.099-4.874)	0.0231*

 Table 2. Post-operative outcomes
Bolded values are significant *Asterisk indicates an n-value of n<10

- hypoalbuminemia including:
 - Pneumonia
 - Acute Renal Failure
 - Venous Thromboembolism
 - Sepsis
- can significantly impact morbidity.
- intervention.

and neck cancer. *Laryngoscope*. 2016;126(7):1567-1571. doi:10.1002/lary.25877

- Head Neck Surg. 2002;128(4):389-392. doi:10.1001/archotol.128.4.389

- doi:10.3171/2016.2.JNS152345

Contact

Bao Y. Sciscent Penn State College of Medicine Milton S. Hershey Medical Center – Department of Otolaryngology Head and Neck Surgery 500 University Drive bsciscent@pennstatehealth.psu.edu

Conclusions

Patients undergoing thyroidectomy with pre-operative hypoalbuminemia have higher rates of postoperative complications compared to patients without pre-operative

Overall rates of complications are low, but these complications

These findings may not be specific to thyroidectomy, but an understanding of the impact of pre-operative hypoalbuminemia as a surrogate marker for surgical complications may help guide expectations and optimal management of thyroidectomy patients.

While not routinely assessed, pre-operative albumin levels could be used as prognostic indicators of malnutrition and risk of adverse postoperative outcomes and be a target of preoperative

References

Danan D, Shonka DC Jr, Selman Y, Chow Z, Smolkin ME, Jameson MJ. Prognostic value of albumin in patients with head

Bhattacharyya N, Fried MP. Assessment of the morbidity and complications of total thyroidectomy. Arch Otolaryngol

Khawaja IM, Randhawa A, Randhawa K, et al. Effect of Hypoalbuminemia in Patients Undergoing Parathyroidectomy for Primary Hyperparathyroidism. Laryngoscope. 2023;133(8):2035-2039. doi:10.1002/lary.30691

Abraham CR, Ata A, Carsello CB, Chan TL, Stain SC, Beyer TD. A NSQIP risk assessment for thyroid surgery based on comorbidities. J Am Coll Surg. 2014;218(6):1231-1237. doi:10.1016/j.jamcollsurg.2014.01.055

Dasenbrock HH, Liu KX, Chavakula V, et al. Body habitus, serum albumin, and the outcomes after craniotomy for tumor: a National Surgical Quality Improvement Program analysis. J Neurosurg. 2017;126(3):677-689.

