An AgriSolar Alternative for Large-Scale Commodity Farming

Lawrence Kearns, FAIA, Founder TrackerSled, Chicago, Illinois larry@trackersled.com

GOAL

Develop prefab modular solar technology so farmers can increase profits, power on-farm ammonia plants, and revitalize rural economies with Scope 3 GHG reduction premiums. Self-ballasted solar farming modules (SFMs) power containerized ammonia plants so commodity farmers can make carbon-free fuel and fertilizer on-farm. With price premiums earned from food companies committed to reducing Scope 3 GHG emissions, farmers will revitalize rural economies. At a staging area, crews assemble SFMs from prefabricated parts before towing them to the field. Galvanized steel tub girders, which arrive nested on flatbed trailers to minimize transportation costs, form ground-agnostic chassis that can be repowered in 30 years.

1MW SOLAR FARM ON 3.5 ACRES SERVING A 1,000 TO 2,000 ACRE GRAIN FARM

RESULTS

With installed SFM costs of \$2.30/W, farmers in the Corn Belt can earn IRRs up to 95% over 30 years by leveraging Inflation Reduction Act incentives. By owning a second means of production (energy), farmers will stabilize one-third of their variable non-land costs.

IRA tax credits can fund up to 50% of the cost of solar, the ammonia plant, and the grid interconnection. Farmers can then transition their fleet and grain dryers to run on electricity or ammonia to maximize the price premiums from companies committed to reducing their Scope 3 GHG emissions. By 2035, two US grain majors must purchase the equivalent of over one billion bushels of carbon-free

corn every year, suggesting premiums of \$200 to \$250 per acre of corn. Auditors can easily verify avoided carbon. Carbon-reduced grain buyers only need a chain of custody, not separate bins.

OUTCOME

A system of SFMs, batteries, and clean fuel & fertilizer plants on farms allows:

- Rural economies to benefit from Scope 3 GHG premiums
- Electric co-ops to dispatch farm batteries to decarbonize their grids, reduce demand costs, and defer feeder upgrades
- Rural communities to create local jobs and improve resilience
- EPCs to increase throughput with labor-saving prefabrication
- The DOE to achieve Energy Transition priorities (see chart below)

Modular prefab solar offers an alternative to farmers leasing land from solar developers to grow specialty crops or graze sheep under the PV panels. Energy dollars stay local when farmers own the assets.

Reduce Time and

No incumbent solar technology today is farmer friendly. SFMs simplify solar by obviating surveys, testing, foundations, and moving parts. With cabling running safely in the gable ridges 12 feet off the ground, SFMs obviate perimeter fencing. A 1MW solar farm on 3.5 acres, constructed in two weeks, will produce all the energy, fuel, and fertilizer required to operate a 1,000-acre to 2,000-acre grain farm. During winter, heat from backside production boosted by a fabric reflector will melt snow. Unlike available racking, ranchers can deploy SFMs around cattle. Pre-engineered SFMs can also serve dairies, irrigation, brownfields, landfills, mineland, and disaster relief sites.

				Cost	T	Ď	Õ	Modernize Grid	Ë C	
		olar	/ind	Lower Soft Costs		\bigcirc	\bigcirc	Distribution Scale	• (\mathbf{O}
	Sled	ber So	ler W	Avoid Surveying		\bigcirc	\bigcirc	Avoids Transmission Costs	• (\mathbf{O}
	icker	velop	velop	Modular Size to Fit		\bigcirc	\bigcirc	Forestalls Utility Upgrades	• (\mathbf{O}
Support Economy	Tra	De	De	Quickly Repowered		\bigcirc	\bigcirc	Reduces Seasonal Peaks	• (
Non-Exotic Parts		\bigcirc	\bigcirc	Prefabricated				Builds Rural Resilience		
Avoids Clipping		\bigcirc	\bigcirc	No Decommissioning		\bigcirc	\bigcirc	Primes Microgrid		
Creates Local Jobs				Low Life Cycle Costs		\bigcirc		Increases Reliability		
Energy Dollars Stay Local		\bigcirc	\bigcirc	Product Not Project		\bigcirc	\bigcirc			
Flexes w/ Farm Operations		\bigcirc	\bigcirc	Avoid Supply Bottlenecks		\bigcirc	\bigcirc	High Farmer Agency	Hiah	Positive Impact
Democratizes Solar		\bigcirc	\bigcirc	Fast to Deploy		\bigcirc	\bigcirc	Moderate Earmer Agency	- Mod	erate Impact
Local Fabrication		\bigcirc	\bigcirc	Roadside Assembly		\bigcirc	\bigcirc	Low Earmar Agency		Negative Impact
Low Cost US Steel		\bigcirc	\bigcirc	Universal Testing		\bigcirc			2011,	
Employs Rural Workforce		\bigcirc	\bigcirc	Fast Farmer Payback		\bigcirc	\bigcirc			