EV Program Best Practices and Insights

Achieving Scale Through Customer-Centric Program Design R

Salt River Project (SRP) is committed to adding 500,000 electric vehicles (EVs) in its territory and 90% of those to flexibility programs by 2035. SRP partnered with EnergyHub to explore how SRP can meet customers' diverse changing needs while managing system impacts.

Pilot's first year provides a solid program foundation

Interpretations and Implications of the 2022 Results

- EV Pilot program (250 participants) evaluating load shed events through EVSEs
- Two EVSE OEM partners: ChargePoint & Enel-X Way (level-2 chargers only)
- 37 utility events were completed between June 1th- Oct. 31st 2022
- Targeted deployment strategy based on EVSE OEM, time, and day-of-week
- Load shed was 18% higher than those observed in other EnergyHub EV programs
- EnergyHub-developed engineered baseline methodology for estimating load shed on a small fleet, via deterministic device-level counterfactual energy consumption during the peak/post-peak hours

EV Charger Load Shed Funnel

Max load 7.87	7.78 kW/dev		
Connectivity x 0.88	6.93 kW/dev		
Plugged-in	x 0.15	1.05 kW/dev	
Charging	x 0.53	0.53 kW/dev	
Dispatch success	x 0.86	0.45 kW/dev	
Event parameter	x 1.00	0.45 kW/dev Average Load Shed	

The Load Shed Funnel combines and layers key parameters to visualize how event load shed results may be lower than expected, given the high loads typically associated with EV charging

Target	Result
Run at least 1	Events run at least 3
event/week beginning	weeks/mo
in June 2022	June-Sept.
 Learn EV charging	 Charging aligns with
behaviors Vary event timing and	price plan incentives 37 events run YTD
duration Understand event	across 9 start times 68% higher load shed
load reduction levels	in later evening events

• Participant rate plan heavily influences charging behavior

- EV & EV-export (11 p.m.-5 a.m. super off-peak) plan customers made up nearly 40% of the participation group and provided no load shed during early-evening events
- Choice of price plan and utility-driven events result in corresponding load spikes/surges
- These behaviors, while intended, may present other issues on the grid in the future
- Common early-evening peak hours have low % of EVs plugged-in and charging
- The value of managed charging is significantly impacted by these behaviors and the time of day a grid service is requested
- Customer participation and satisfaction was high
- Low opt-out rates and enrollment targets met relatively quickly

2023 New Strategies for the EV Flex Charge Program

Using EV DR for more than just evening peak mitigation

Demand

Thermostat DR snapback reduction

Energy cost reduction

Asset-aware dispatch

2022 Pilot Demand Response (DR) Results

- SRP customer price plans heavily impacted EV DR load shed results
- Customers largely align their EV charging with rate plan off-peak & super off-peak hours • Peak load reduction window for events was observed after 7 p.m.
- Weekday events had higher load shed results in evening hours
- Common early-evening peak hours have low % of EVs plugged-in and charging
- The EH engineered baseline showed more consistent and reliable results compared to the ISO averaged baseline for this this participant group

Desired outcomes:

- Utilize EVSE controls to complement customer price plans and behaviors via surge **smoothing** and **demand response refinement** techniques
- Increase value to the grid via extending life of distribution assets and reducing energy costs while avoiding fatiguing customers
- Leverage EVSE controls to compliment/offset the impacts of other DERs on the grid (e.g. **thermostat snapback** following SRP BYOT events)

Summer (May-October) Fleet Charging Behavior

Basic plan

0.6

0.4

0.2

0.0

SRP customer price plans affect DR impact

 \bullet \bullet \bullet \bullet

Summer weekday vs. weekend load grouped by surge hour 2.0 **8pm** TOU/solar 11pm EV-specific 6pm TOU 2.0 0.8 1.5 1.5 0.6 1.0 1.0 0.4 0.5 0.5 0.2 0.0 0.0 0.0

Device counts by "surge" hour			
	Count	Surge Hr	
EV-specific customer rate plans	86	11pm	
Other TOU/solar plans	53	8pm	
TOU (on-peak 4-7 pm weekdays)	3	7pm	
TOU (on-peak 3-6 pm weekdays)	60	6pm	
Basic: no change in rates	30	none	