Genomic Alterations and Outcomes With Fixed-Duration Ibrutinib + Venetoclax: Results From the Phase 3 GLOW Study in Patients With Previously Untreated Chronic Lymphocytic Leukemia

Arnon Kater,¹* Brendan Hodkinson,²* Carol Moreno,³ Talha Munir,⁴ Mark-David Levin,⁵ Carsten Niemann,⁶ Kegin Qi,⁷ Pierre Sinet,⁸ Kurt Baeten,⁹ Donne Bennett Caces,¹⁰ Srimathi Srinivasan¹¹

¹Amsterdam Medical Centers, University of Amsterdam, Amsterdam, Netherlands; ²Oncology Translational Research & Development, Spring House, PA, United States; ³Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 4St James's Hospital, Leeds, United Kingdom; 5Albert Schweitzer Hospitalet, Copenhagen University Hospital, Department of Hematology, Copenhagen, Denmark; ⁷Janssen Research & Development, Titusville, NJ, United States; ⁹Janssen Research & Development, Beerse, Belgium; ¹⁰Janssen Research & Development, Raritan, NJ, United States; ¹¹Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA, United States. *Co-First authors

INTRODUCTION

 Genomic alterations, including immunoglobulin heavy-chain variable (IGHV) mutation status, are prognostic for chemoimmunotherapy outcomes in chronic lymphocytic leukemia (CLL).^{1,2} We explored the prognostic impact of baseline genomic aberrations and IGHV status on efficacy outcomes with fixed-duration ibrutinib + venetoclax (lbr + Ven) and chlorambucil + obinutuzumab (Clb + O) in the phase 3 GLOW study (NCT03462719)

OBJECTIVES

- To evaluate the impact of baseline genomic alterations on response, undetectable minimal residual disease (uMRD), and progression-free survival (PFS) of lbr + Ven and Clb + O
- To report PFS and overall survival (OS) outcomes at 46 months of median follow-up

METHODS

- GLOW evaluated efficacy and safety of lbr + Ven and Clb + O in patients with previously untreated CLL. Patients aged \geq 65 or 18 to 64 years with Cumulative Illness Rating Scale score of > 6 or creatinine clearance of < 70 mL/min were randomized 1:1 and stratified by del(11q) and IGHV status. Patients with del(17p) or known TP53 mutation were excluded. Del(11q), trisomy-12 (+12), and del(13q) were assessed by fluorescence *in situ* hybridization (FISH), IGHV mutation status by DNA-based next-generation sequencing (NGS, 98% cutoff), and exomescale gene mutation analysis by NGS (Personalis ImmunoID NeXT), with minimal variant allele frequency detection limit of 5%. NGS was also used to assess uMRD (< 10⁻⁴) in peripheral blood (PB)
- Cox proportional hazard models, Kaplan-Meier estimates, and log-rank tests were used to analyze time-to-event variables. Fisher's exact test was used for association between binary variables. Reported *P* values are nominal. For statistical comparisons between and within arms, genes with a ≥ 7% frequency, *MGA* and *TP53* were used

B

RESULTS

FIGURE 1: Incidence of genomic alterations

ICD, intracellular domain.

the lbr + Ven arm versus those in the Clb + O arm (**Figure 2**)

FIGURE 2: Best response by genetic subgroups

CRR, complete response rate; ITT, intent to treat; ORR, overall response rate. **P* < 0.05; ** *P* < 0.01. Significant difference between the arms is marked with a teal asterisk for CRR and a gray asterisk for ORR.

except for +12, *IGLL5,* and mIGHV (**Figure 3**)

B-CELL MALIGNANCIES

 Incidences of baseline genomic alterations across both arms based on Döhner hierarchy were 18.5% for del(11q), 22.3% for +12, and 44.1% for del(13q). IGHV was unmutated (uIGHV) in 58.8% and mutated (mIGHV) in 31.8% of samples. The most frequent gene mutations were *NOTCH1-ICD*, *SF3B1*, *ATM*, *XPO1*, and *RPS15* (**Figure 1**) - Baseline genomic alterations were balanced between treatment arms

• Patients with del(11q), normal karyotype, del(13q), NOTCH1-ICD, SF3B1, ATM, PCLO, mIGHV, and uIGHV achieved significantly higher complete response rates (CRRs) in

• Patients in the lbr + Ven arm achieved higher uMRD rates at 3 months after end of treatment (EOT + 3) than those in the Clb + O arm, regardless of genetic alterations,

IGHV, immunoglobulin heavy-chain variable; indel, short insertions/deletions; ITT, intent to treat; mIGHV, mutated IGHV; uIGHV, unmutated IGHV SNV, single nucleotide variant; uMRD, undetectable minimal residual disease. Vertical lines refer to rates in the ITT population. **P* < 0.05. Significant differences in uMRD rates are marked with a blue bracket and an asterisk for Clb + O, and a gray bracket and an asterisk for between-arm comparisons

- Among patients treated with Ibr + Ven, uMRD rates trended higher for del(13q) however differences were not statistically significant
- (mutated, 28.6% vs wild-type, 40.7%), however differences were not statistically significant. Patients with uIGHV achieved significantly lower uMRD than patients with mIGHV

FIGURE 4: PFS of Ibr + Ven versus Clb + O according to chromosomal and genetic alterations

CI, confidence interval; HR, hazard ratio; ICD, intracellular domain; PFS, progression-free survival. Both +12 and IGHV had imbalances in non-progression-related on-treatment deaths (3/19 [+12] vs 4/87 [absence] and 6/67 [uIGHV] vs 0/32 [mIGHV]) and sample sizes were small, which may limit interpretation of these data

(presence, 66.7% vs absence, 49.3% and uIGHV, 59.7% vs mIGHV 40.6%), and lower for +12 (42.1% vs absence 57.5%) and *NOTCH1-ICD* (mutated 38.9% vs wild-type 58.0%),

- For the Clb + O arm, uMRD rates at EOT + 3 in PB trended higher for +12 (50.0% vs absence 36.1%), and lower for SF3B1 (mutated, 26.3% vs wild-type, 41.9%) and ATM

	lbr + Ven Clb + O					
			Clb + O		Hazard ratio	
	Event/N	Median	Event/N	Median	(95% CI)	P Value
	106	-	105	-	-	-
	5/20	NE	16/19	18.6	0.15 (0.05-0.41)) < 0.001
	24/86	NE	62/86	23.7	0.25 (0.15-0.40)) < 0.001
	9/19	NE	15/22	19.2	0.58 (0.25-1.35)) 0.202
	20/87	NE	63/83	23.7	0.17 (0.10-0.29)) < 0.001
	7/34	NE	25/35	25.6	0.19 (0.08-0.45)) < 0.001
	22/72	NE	53/70	18.6	0.24 (0.15-0.40)) < 0.001
	8/33	NE	22/29	23.8	0.18 (0.08-0.41)) < 0.001
	21/73	NE	56/76	21.7	0.26 (0.16-0.43)) < 0.001
	3/32	NE	21/35	36.8	0.12 (0.03-0.40)) < 0.001
	23/67	NE	47/57	16.7	0.22 (0.13-0.37)) < 0.001
	24/96	NE	73/100	23.8	0.22 (0.13-0.34)) < 0.001
	5/10	45.8	5/5	16.7	0.14 (0.03-0.77)) < 0.001
	22/88	NE	64/86	21.7	0.20 (0.12-0.33)) < 0.001
	7/18	NE	14/19	21.5	0.42 (0.17-1.05)) 0.055
	25/97	NE	72/99	21.5	0.23 (0.14-0.36)) < 0.001
	4/9	NE	6/6	23.7	0.16 (0.04-0.67)) 0.005
	27/99	NE	76/103	23.7	0.24 (0.15-0.37)) < 0.001
	2/7	NE	2/2	12.3	0.00 (0.00-NE)	0.002
	27/97	NE	73/99	21.0	0.23 (0.15-0.37)) < 0.001
	2/9	NE	5/6	40.5	0.18 (0.03-0.97)) 0.027
	26/88	NE	62/86	23.9	0.28 (0.17-0.44)) < 0.001
	3/18	NE	16/19	18.4	0.05 (0.01-0.24)) < 0.001
	28/97	NE	74/99	21.0	0.24 (0.15-0.37)) < 0.001
	1/9	NE	4/6	36.8	0.15 (0.02-1.37)) 0.048
	28/95	NE	68/91	23.7	0.25 (0.16-0.39)) < 0.001
	1/11	NE	10/14	18.6	0.07 (0.01-0.54)) 0.001
100						

- With median follow-up of 46 months, PFS was significantly improved for patients treated with lbr + Ven versus Clb + O (HR, 0.214 [95% Cl, 0.138-0.334], P < 0.0001)
- PFS was significantly improved for patients in the lbr + Ven arm versus the Clb + O arm across all chromosomal and genomic subgroups except +12 (HR, 0.58), mutated NOTCH1-ICD (HR, 0.42), and mutated IGLL5 (HR, 0.15), which trended in favor of Ibr + Ven, but were not statistically significant (**Figure 4**)
- PFS in subgroups with chromosomal aberrations is shown in **Figure 5**

FIGURE 5: PFS in subgroups with chromosomal aberrations

Clb + O, chlorambucil + obinutuzumab; PFS, progression-free survival.

• With median follow-up of 46 months, patients in the lbr + Ven arm had improved OS versus the Clb + O arm (HR, 0.487 [95% Cl, 0.262-0.907]; nominal P = 0.0205) (Figure 6)

FIGURE 6: OS of Ibr + Ven versus Clb + O

CONCLUSIONS

Patients in the lbr + Ven arm achieved higher uMRD rates versus those in the Clb + O arm across most genomic subgroups, except patients with trisomy-12, *IGLL5* mutation, and mIGHV

Patients in the lbr + Ven arm achieved significantly improved PFS versus those in the Clb + O arm across most genomic subgroups

PFS and OS were significantly improved in patients treated with Ibr + Ven versus Clb + O at 46 months of follow-up

ACKNOWLEDGMENTS

This study was sponsored by Janssen Research & Development, LLC. Writing assistance was provided by Saba Choudhary, PhD, of Parexel and funded by Janssen Scientific Affairs, LLC.

REFERENCES:

1. Döhner H, et al. *N Engl J Med*. 2000;343:1910-1916. 2. Stilgenbauer S, et al. *Blood*. 2014;123:3247-3254.

Presented at the biennial International Workshop on Chronic Lymphocytic Leukemia (XX iwCLL 2023); October 7-9, 2023; Boston, Massachusetts, USA.

This abstract was accepted and previously presented at the European Hematology Association (EHA) Meeting; June 8-11, 2023; Frankfurt, Germany.