1154

Impaired long-term antibody persistence after primary immunization with pneumococcal vaccines in patients with chronic lymphocytic leukemia compared to immunocompetent controls

M Kättström¹, C Virta², M Melin², N Ekström², P-O Andersson³, Y Hammarlund⁴, S Lockmer⁵, I Nilsson⁶, D Roth⁷, M Svensson⁸, T Tolf⁹, E Kimby⁵, T Norén¹⁰, B Uggla¹, S Athlin¹¹

¹ Department of Medicine, Faculty of Medicine and Health, Örebro University, Sweden, ² Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland, ³ Section of Hematology and Coagulation, Department of Specialist Medicine, Sahlgrenska University Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Karolinska Institute, Stockholm, Sweden, ⁴ Neder, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁴ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁵ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Falun Hospital, Göteborg, Sweden, ⁵ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Falun Hospital, Sweden, ⁵ Department of Medicine, Falun Hospital, Sweden, ⁵ Department, ⁵ D ⁶ Department of Medicine, Karlstad Hospital, Sweden, ⁷ Institution of Clinical Sciences, Faculty of Medicine, Eskilstuna Hospital, Sweden, ⁹ Department of Medical Sciences, Section of Hematology, Uppsala University, Sweden, ¹⁰ Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Sweden, ¹¹ School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Sweden

Introduction

- Patients with Chronic Lymphocytic Leukemia (CLL) have increased risk for invasive pneumococcal disease (IPD).
- Impaired immune response to pneumococcal vaccination in CLL patients calls for improved vaccination strategies.
- A previous randomized study of treatment-naïve CLL patients (n=126) showed superior immune response after vaccination with T-cell dependent conjugated pneumococcal vaccine (PCV13) compared to non-T cell dependent polysaccharide vaccine (PPSV23).
- Cut-off levels commonly used for defining serological protection rates is serotype-specific IgG levels $\geq 0.35 \ \mu g/mL$.
- More stringent cut-offs are sometimes used for evaluation of immune respons, in this study set to $\geq 1.0 \ \mu g/mL$.
- Follow-up studies of long-term pneumococcal antibody persistence and revaccination strategies in CLL patients after PCV13 and PPSV23 are lacking.

Objective

To assess the long-term antibody persistence, 3-6 years after primary immunization with PCV13 or PPSV23 in CLL patients and healthy controls.

Reference:

Svensson T, Kattstrom M, et.al Pneumococcal conjugate vaccine triggers a better immune response than pneumococcal polysaccharide vaccine in patients with chronic lymphocytic leukemia A randomized study by the Swedish CLL group. Vaccine. 2018;36(25):3701-7.

Orange J.S. et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: A working group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2012;130((Suppl. S3)):S1-S24.

Methods

- 19A, 19F and 23F).

Results

 CLL patients (n=74), primary immunized in our previous randomized study with PCV13 (group A) and PPSV23 (group B), were included in a revaccination study and assessed for long term antibody persistence. • Immunocompetent controls (n=31) immunized with PCV13 (group C) or PPSV23 (group D) were recruited.

• A bead-based multiplex immunoassay was used for quantitation of IgG (µg/ mL) against PCV13-related serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C,

• Rates of serotype-specific IgG levels ≥0.35 µg/mL for >50% (7-13/13) of the serotypes were calculated and used to evaluate persistent antibody levels. • In an additional, more stringent cut-off analysis, rates $\geq 1.0 \ \mu g/mL$ for $\geq 50\%$ (7-13/13) of the serotypes were evaluated.

Primary immunization, n (%)

Age, median (range)

Female gender, n (%)

Time since immunization, median months (range) Time from CLL diagnoses, median months (range) ALC, median x 109/L (range) Total IgG, median g/L (range)

Hypogammaglobulinema, n (%) IgG levels ≥0.35 µg/mL, n (%) IgG levels ≥1.0 µg/mL, n (%)

• After a median time of 5 years since primary immunization, the rate of persistent antibody levels in CLL patients were lower compared to controls (group A+B vs C+D) at ≥0.35 µg/mL (29/74, 39% vs 26/31, 84%; p<0.001). • A significant difference was also present between group B and D at ≥ 0.35 µg/mL, 13/36, 34% vs 18/22, 82%; p<0.01).

• No significant difference was seen between CLL patients and controls using cut-off ≥1.0 µg/mL (10/74,14% vs 10/31, 32%; ns).

• Rates of patients with persistent antibody levels after primary immunization with PCV13 or PPSV23 did not differ significantly within the groups.

• Hypogammaglobulinemia was seen in 19/74 (26%) of CLL patients. • Fifty-eight patients (78%) were still treatment-naïve, 9 (12%) were off treatment in remission and 6 (8%) had ongoing treatment with BTK inhibitors or anti-CD20 antibodies.

Conclusions

- compared to immunocompetent controls.
- revaccinations is currently being analyzed.

CLL patients (group A+B) (n=74)		Controls (group C+D) (n=31)	
PCV13 38 (51)	PPSV23 36 (49)	PCV13 9 (29)	PPSV23 22 (71)
73 (54-90)	77 (51-93)	69 (54-81)	76 (70-84)
21 (55)	17 (45)	5 (56)	16 (73)
65.5 (54-75) 90.5	65 (52-74) 85	61 (37-105) NA	60.5 (46-87) NA
(56-261)	(53-305)		
13.1 (0.3-205)	12.8 (0.5-189)	1.6 (1.1-2.9)	1.6 (1.1-2.4)
8.5 (2.9-21.1)	8.4 (3.6-8.2)	11.5 (4.4-17.2)	11 (8.5-18.6)
9 (24)	7 (19)	0 (0)	0 (0)
16 (44)	13 (34)	8 (89)	18 (82)
7 (19)	3 (8)	4 (44)	6 (27)

• CLL patients have impaired long-term antibody persistence 5 years after primary immunization with pneumococcal vaccines

• Whether CLL patients will benefit from pneumococcal