

1. Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. 2.Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.



1.2, *p* < 0.05; Figure 1A, B).

# Fatty Acid Metabolism Fingerprints Predict Prognosis and Regulate Immunophenotype in **Chronic Lymphocytic Leukemia**

Yang Zhang<sup>1</sup>, Xinting Hu<sup>2</sup>, Zheng Tian<sup>2</sup>, Hua Wang<sup>1</sup>, Xin Zhang<sup>2</sup>, Xin Wang<sup>1,2</sup> and Ya Zhang<sup>1,2\*</sup> Correspondence to Prof. Ya Zhang: maryzhangya@gmail.com

• The ROC analysis showed better specificity and sensitivity of **FAM-Score (AUC = 0.738**, p < 0.001) than Binet stage (AUC = 0.527, p =0.487; Figure 2B).

• The Kaplan–Meier curves suggested a significant association between high-risk subgroup and undesirable overall survival in both the training set and the independent validation set (p < 0.001, Figure 2C; p = 0.006, Figure 2D).

Figure 3



• The immune infiltrates between two subgroups showed significant differences in T cells, NK cells, and macrophages, suggesting the impact of FAM on CLL immunophenotype (Figure 3).

• The FAM-score predicts the survival outcomes of CLL patients and distinguishes CLL patients with different immunophenotypes effectively.

 The FAM reprogramming is an integral part of shaping individual immune characteristics in CLL.



## Conclusions