Transcription factor FoxO1l Mediates Adaptive Increase in Akt Activity and Cell Survival During BCR Inhibitor Therapy in CLL
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Introduction 1. Akt is activated during ibrutinib therapy in vivo 3. Transcription factor FoxO1 is induced during ibrutinib therapy and 5. FoxO1 inhibitor decreases viability and proliferation
BTK inhibitor therapy induces Akt phosphorylation (S473) is induced above pre-therapy levels in ~70% of CLL patients treated with ibrutinib | | regulates Rictor-pAktS473 axis capacity of CLL cells
transient  peripheral  blood within the first 3 months of tlherapy (Fig. 1A). Patignts with upregu!ated or stable pAktS47® Ieyels upon ibrutinib The RNA sequencing of in vivo ibrutinib-exposed CLL cells revealed FoxO1 induction (Fig. 2A, 3A), Lastly, we tested effect of FoxO1 inhibitor on CLL cells. The inhibitor lowers levels of
lymphocytosis in CLL lasting for | | therapy had a more prominent and longer lasting lymphocytosis compared to those with downregulated | | 5nq this attracted our attention since FoxO1 has been shown to transcriptionally activate Rictor in Rictor and pAkts#73 (Fig. 5A) and blocks Rictor induction and pAktS*’3 recovery when
several _months. Althpugh genetic pAktS‘"l3 Igvgls (F|g. 1B). Ft{nhermore, CLL cells obtained during |brut|n|p therapy in vivo were hlghly sensitive renal cancer cells (Lin et al., 2014). Analysis of genome-wide FoxO1 binding (CUT&RUN) revealed a combined with ibrutinib in MEC1 cells (Fig. 5B). Furthermore, FoxO1 inhibitor (0.5 uM)
mechanisms of resistance later to Akt inhibitor (F'g'.l.c;)' Slmll§rly to CLL cells, pAkt5f73 was restorgd in MEC1 pells treateq with ibrutinib in clearly increased FoxO1 binding to RICTOR promotor in ibrutinib-treated MEC1 cells (Fig. 3B), and induced apoptosis of primary CLL cells alone or more potently in combination with
dunng therapy are well known, it vitro, where after an initial drop in Akt phosphorylation, its levels were induced within 5 days (Fig. 1D). overall increased binding across the genome (1,190 FoxO1-bound regions in vehicle-treated cells vs. ibrutinib or idelalisib (Fig. 5C). CLL co-culture with stromal cells engineered to produce
remains  unclear whether non- B 3,354 regions in ibrutinib-treated cells) with mTOR signalling being enriched exclusively in ibrutinib T-cell factors (CD40L+IL21+IL4) could not rescue CLL cells from FoxO1 inhibitor-
genetic ad_aptauon mec‘hams_mS Al @ &*@ }éﬁ Aii :Ti:ealaurenz‘-;veﬁfgg;mlczel) B C treated cells (Fig. 3C). B ¥ . induced apoptosis (Fig. 5D). FoxO1 inhibition also blocked the proliferation of primary
exist, allowing CLL cells’ survival 1 " e = pAKIST levels up (n=23) Ai Aii = i DMSO CLL cells in this setting and this was more potent in combination with ibrutinib (Fig. 5E).
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samples obtained from CLL | | 2. Akt is activated by increased levels of Rictor after ibrutinib therapy

I'L?ﬂi::; orb?cfizrlilisisn?her:um}g Transcription profiling of paired CLL samples obtained before and during ibrutinib therapy in vivo identified 25 | | 4. FOxO1 supports survival of CLL cells during BTK and PI3K3
Py differentially expressed genes involved in PI3K-Akt pathway (Fig. 2A). Rictor induction on ibrutinib was inhibition

vivo (sum - n=70). In  vitro particularly notable since it is an essential assembly protein for the mTORC2 complex, which directly
experiments were _performed phosphorylates Akt on S473 (Sarbassov et al. 2005) (Fig. 2B). Rictor knock-out in MEC1 cells led to dramatic We produced 15 independent FoxO1 knock-out MEC1 clones and noted prominent Rictor and
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CLLgceIIs (12100) and ilfrutini[)y decrease in pAktS#72 levels and MEC1Reto-kO were not able to induce pAKtS#72 after ibrutinib treatment (Fig. 2C), PAKLS7S downregulation (FFIogx-Of:KAO) and decreased ability to induce Rictor and pAIfI:!5473 upon ibrutinib
idelalisib (both 2 uM for MEC1 | | @1d had a growth disadvantage compared to MEC1* in the presence of ibrutinib (Fig. 2D). treatment (Fig. 4B). MEC1! had a growth disadvantage compared to MEC1" cells in presence ol R
idelalisib (both 2 pM for n=39 of ibrutinib or idelalisib (Fig. 4C), confirming the importance of FoxO1 during BCR inhibition. This is in o-cultureon !
and 1 M for primary CLL cells), Ai o Aii S Bi Bii , 0% line with FoxO1-Rictor-pAktS47 axis being induced during idelisib therapy in vivo (Fig. 4D). day 5 (primary CLL cells)
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	Snímka 1: Transcription factor FoxO1 Mediates Adaptive Increase in Akt Activity and Cell Survival During BCR Inhibitor Therapy in CLL

