# The PKC-ß Inhibitor MS-553 Displays Preclinical Efficacy in BTK inhibitor Resistant **Chronic Lymphocytic Leukemia**

Britten Gordon<sup>1</sup>, Elizabeth M. Muhowski<sup>1</sup>, Janani Ravikrishnan<sup>1</sup>, Shanmugapriya Thangavadivel, PhD<sup>1</sup>, Samon Benrashid<sup>1</sup>, Alexander He<sup>1</sup>, Shrilekha Misra<sup>1</sup>, Tzung-Huei Lai<sup>1</sup>, Alexander Marr<sup>1</sup>, Brandi Walker<sup>1</sup>, Elizabeth Perry<sup>1</sup>, Nicole Grieselhuber<sup>1</sup>, Kerry A. Rogers<sup>1</sup>, James Š. Blachly<sup>1</sup>, Adam S. Kittai<sup>1</sup>, Seema Bhat<sup>1</sup>, John Ć. Byrd<sup>3</sup>, Michael Niesman<sup>4</sup>, Kai Zhang<sup>4</sup>, Deepa Sampath<sup>2</sup>, and Jennifer A. Woyach<sup>1</sup>

<sup>1</sup>Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; <sup>2</sup>Division of Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX: Department of Internal Medicine, <sup>3</sup>University of Cincinnati, Cincinnati, OH, USA <sup>4</sup>MingSight Pharmaceuticals Inc., San Diego, CA

#### Background

- The treatment of chronic lymphocytic leukemia (CLL) has been revolutionized through usage of targeted therapies against the B-cell receptor (BCR) signaling cascade, mainly through Bruton's tyrosine kinase (BTK) inhibitors.
- Resistance to BTK inhibition has emerged in patients through the acquisition of mutations in BTK<sup>1,2</sup>. Despite these mutations, BCR signaling remains intact, suggesting targeting molecules downstream of BTK may be an effective therapeutic strategy.
- Protein Kinase C- $\beta$  (PKC $\beta$ ) is a downstream component of the BCR pathway and has been demonstrated as an effective therapeutic target in CLL.<sup>3</sup>
- MS-553 is a potent, ATP competitive, reversible inhibitor of multiple PKC isoforms including PKCβ.
- Develop therapies for CLL patients who are resistant to either covalent BTKi (cBTKi) or non-covalent BTKi (ncBTKi).
- We hypothesize the inhibition of PKC<sub>β</sub> through MS-553 can be a therapeutic strategy for the treatment of treatment-naïve or cBTKi or ncBTKi resistant CLL.

## PKC isoform inhibition by MS-553

| Human PKC isoform                                                      | IC <sub>50</sub> (nM) |
|------------------------------------------------------------------------|-----------------------|
| Alpha (α)                                                              | 2.3                   |
| Beta I (βI)                                                            | 8.1                   |
| Beta II (βII)                                                          | 7.6                   |
| Theta (θ)                                                              | 25.6                  |
| Gamma (y)                                                              | 57.5                  |
| Mu (μ)                                                                 | 314                   |
| Epsilon (ε)                                                            | 808                   |
| Delta ( $\delta$ ), eta ( $\eta$ ), iota ( $\iota$ ), zeta ( $\zeta$ ) | >1000                 |

**Figure 1.** Inhibition of human PKC isoforms by MS-553. *In vitro* biochemical assays were used to determine the  $IC_{50}$  of MS-553 on multiple PKC isoforms.

## **References and Acknowledgments**

**References:** <sup>1</sup> Woyach, JA et al. (2014). *NEJM* 370, 2286-2294 <sup>2</sup> Wang, E et. Al (2022). *NEJM* 386, 735-746

<sup>3</sup> El-Gamal, D et al. (2014). *Blood* 124, 1481-1491

Acknowledgements: We would like to thank MingSight Pharmaceuticals Inc. for their ongoing support, collaboration, and providing us with the MS-553 compound.



Figure 2. Primary CLL cells were treated with 5 µM MS-553 for 24 hours and stimulated with 400 nM PMA for 90 minutes. A) Representative immunoblot showing decrease phosphorylation of PKCβ and its downstream targets. **B**) Quantification of immunoblots (n=15), results are reported as fold change in expression compared to vehicle control.

# MS-553 inhibits β-Catenin signaling



Figure 3. Primary CLL cells were treated with with 5 µM MS-553 for 24 hours and stimulated with 400 nM PMA for 90 minutes. A) Representative immunoblot showing decrease in β-Catenin expression and its downstream targets. B) Quantification of immunoblots (n=9), results are reported as fold change in expression compared to vehicle control

# MS-553 inhibits β-Catenin signaling



**Figure 4.** Primary CLL cells were treated with 1 or 5 µM MS-553 for 48 hours and stimulated with 400 nM PMA for 90 minutes. A) Graphs showing decreased mRNA expression of downstream NFkB genes. (n=7) B) Graphs showing decreased mRNA expression of downstream WNT pathway targets (n=7).

#### **MS-553 retains efficacy in Primary cBTKi resistant samples**



Figure 5. Primary cBTKi resistant CLL cells and TMD8 cells harboring either WT, C481S, or T474I BTK mutations were treated with MS-553 and assessed for viability and downstream cytokine expression. A) WT, C481S, and T474I TMD8 cells were treated with 5 µM MS-553 for 48 hours and assessed for viability via Annexin V/PI. B) TMD8 cells WT, C481S, or T474I cells were treated with either 1 µM or 5 µM MS-553 for 24 hours and assessed for CCL3 and CCL4 expression (n=3). C) CLL cells harboring C481S BTK were treated with either 1 µM or 5 µM MS-553 for 24 hours and assessed for CCL3 and CCL4 expression (n=8). D) CLL cells harboring C481S BTK were treated with either 1 µM or 5 µM MS-553 for 72 hours and assessed for viability via Annexin V/PI.





**The Ohio State University** COMPREHENSIVE CANCER CENTER

The James

### MS-553 improves survival in the Eu-MTCP1 mouse model



**Figure 6.** C57BL/6J mice were engrafted with 10<sup>6</sup> splenocytes from leukemic Eµ-MTCP1 mice and monitored for survival and peripheral disease progression. A) Measurement of overall mice survival of mice treated with vehicle or 90 mg/kg MS-553 BID (vehicle n=20, 90 mg/kg MS-553 n=17). B) Measurement of peripheral disease characterized by CD45+/CD5+/CD19+ % in peripheral blood.

## Conclusions

- MS-553 is a potent inhibitor of PKCβ and displays potency in primary CLL cells.
- MS-553 inhibits BCR depend signaling shown by reduced phosphorylation of PKC $\beta$  and its downstream targets.
- In treatment-naïve samples, MS-553 displays modest cytotoxicity and the ability to overcome stromal protection while also inhibiting downstream pro-inflammatory cytokine expression.
- MS-553 inhibits downstream  $\beta$ -Catenin signaling shown by reduced levels of  $\beta$ -Catenin and its downstream targets.
- In both covalent and non-covalent resistant TMD8 cells, MS-553 maintained its ability to induce modest cytotoxicity and inhibition of downstream pro-inflammatory cytokine expression.
- Treatment of Eµ-MTCP1 mice with MS-553 leads to significantly longer OS and decreased peripheral disease.
- Together our results establish MS-553 as a potential therapeutic to treat CLL patients regardless of BTK status.