T cell type abundance and gene expression patterns in the context of clinical progression of treatment-naïve CLL/MBL patients from the OxPLoreD study

Grigore-Aristide Gafencu¹, Niamh Appleby¹, Charlotte Rich-Griffin³, Kyla Dooley², Holm Uhlig², Calliope Dendrou³⁴, Dimitris Vavoulis¹³, Anna Schuh¹⁵

1. Oxford Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, UK; 2. Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, UK; 3. Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 4. The Kennedy Institute of Rheumatology, University of Oxford, UK; 5. Department of Oncology, University of Oxford, Oxford, UK; 6. The Kennedy Institute of Rheumatology, University of Oxford, UK; 6. The Kennedy Institute of Rheumatology, University of Oxford, UK; 6. The Kennedy Institute of Rheumatology, University of Oxford, UK; 6. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rheumatology, University of Oxford, UK; 7. The Kennedy Institute of Rh

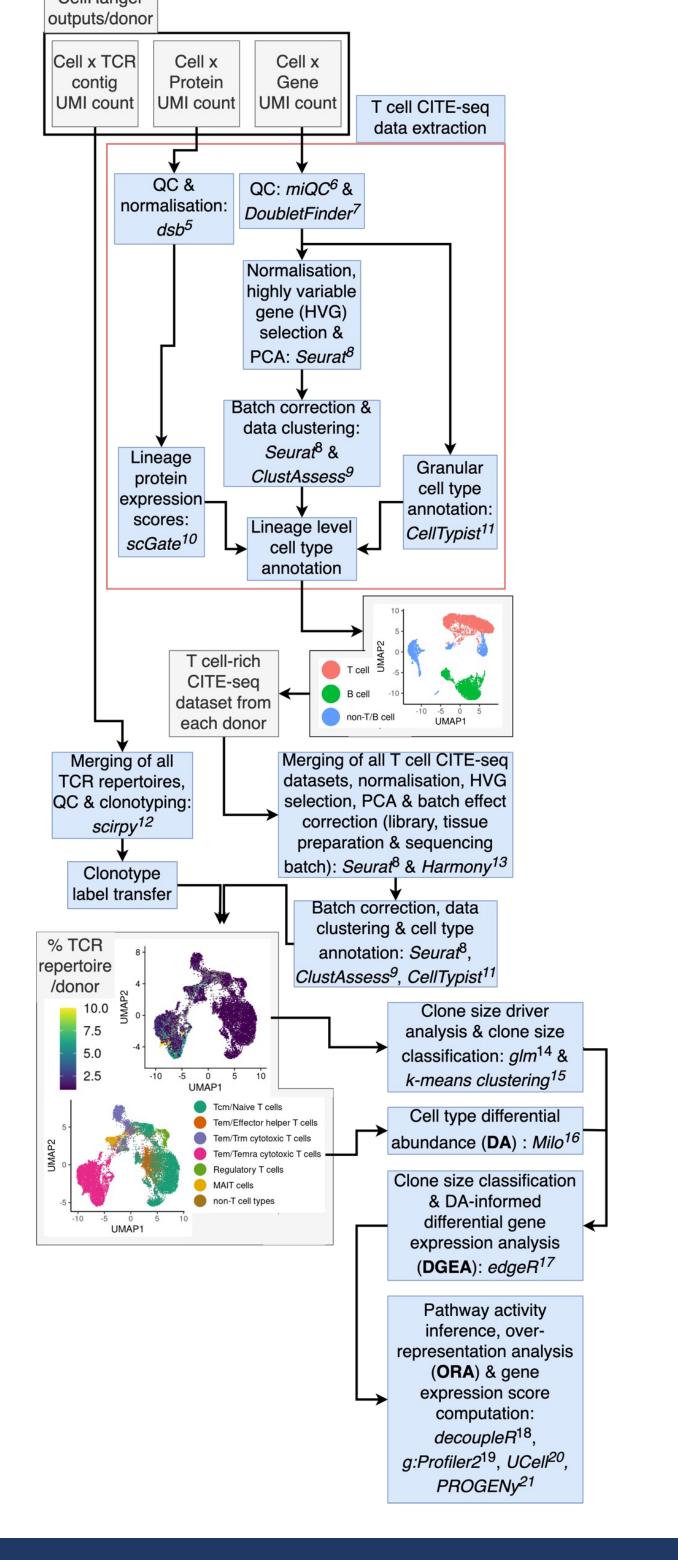
Introduction

Chronic lymphocytic leukaemia (CLL) is a B-cell neoplasm preceded by an asymptomatic precursor phase, monoclonal B-cell lymphocytosis (MBL). The Oxford Premalignant Lymphoproliferative Disorders (OxPLoreD) study (REC 19/SC/0065; NCT04023747) is a national prospective study of people with MBL/Stage A CLL or high-risk MGUS exploring the genomic and immunological features of progression to cancer. Malignancy progression may be mediated by the expansion of one or more subclones with distinct gene expression and/or mutation profile (1) as well as non-tumour cells in the peripheral blood (2). Utilising single cell multiomic (CITE-seq (3) & scTCR/BCR-seq) datasets, we aim to dissect the transcriptome and clonal architecture of T cells, known to be in a close cellular crosstalk with CLL tumour cells (4), in the context of MBL/CLL progression & highlight novel prognostic CLL markers.

For more details regarding the OxPLoreD study, please refer to poster abstract 1552313.

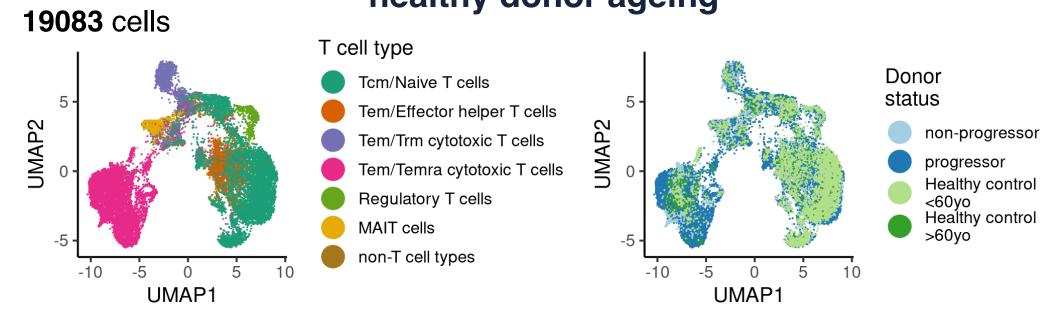
Single cell multiomic (CITE-seq & TCR/BCR-seq) datasets

			SHM				
ID	Diagnostic	Clinical status	status	Age	Sex	Tissue preparation	Source
Α	MBL/CLL	non-progressor	mutated	72	M	unsorted PBMNCs	OxPLoreD
В	MBL/CLL	non-progressor	unmutated	67	M	unsorted PBMNCs	OxPLoreD
C	MBL/CLL	non-progressor	unmutated	74	M	unsorted PBMNCs	OxPLoreD
D	MBL/CLL	progressor	unmutated	74	M	unsorted PBMNCs	OxPLoreD
						sorted CD3+ &	
Ε	MBL/CLL	progressor	unmutated	59	F	CD19+ 1:1	OxPLoreD
						sorted CD3+ &	
F	MBL/CLL	progressor	unmutated	59	M	CD19+ 1:1	OxPLoreD
G	healthy	healthy old	NA	66	F	unsorted PBMNCs	Cartography
Н	healthy	healthy young	NA	24	M	unsorted PBMNCs	Cartography
	healthy	healthy old	NA	60	M	unsorted PBMNCs	Cartography
J	healthy	healthy young	NA	47	M	unsorted PBMNCs	Cartography
K	healthy	healthy old	NA	71	M	unsorted PBMNCs	Cartography
L	healthy	healthy young	NA	23	F	unsorted PBMNCs	Cartography

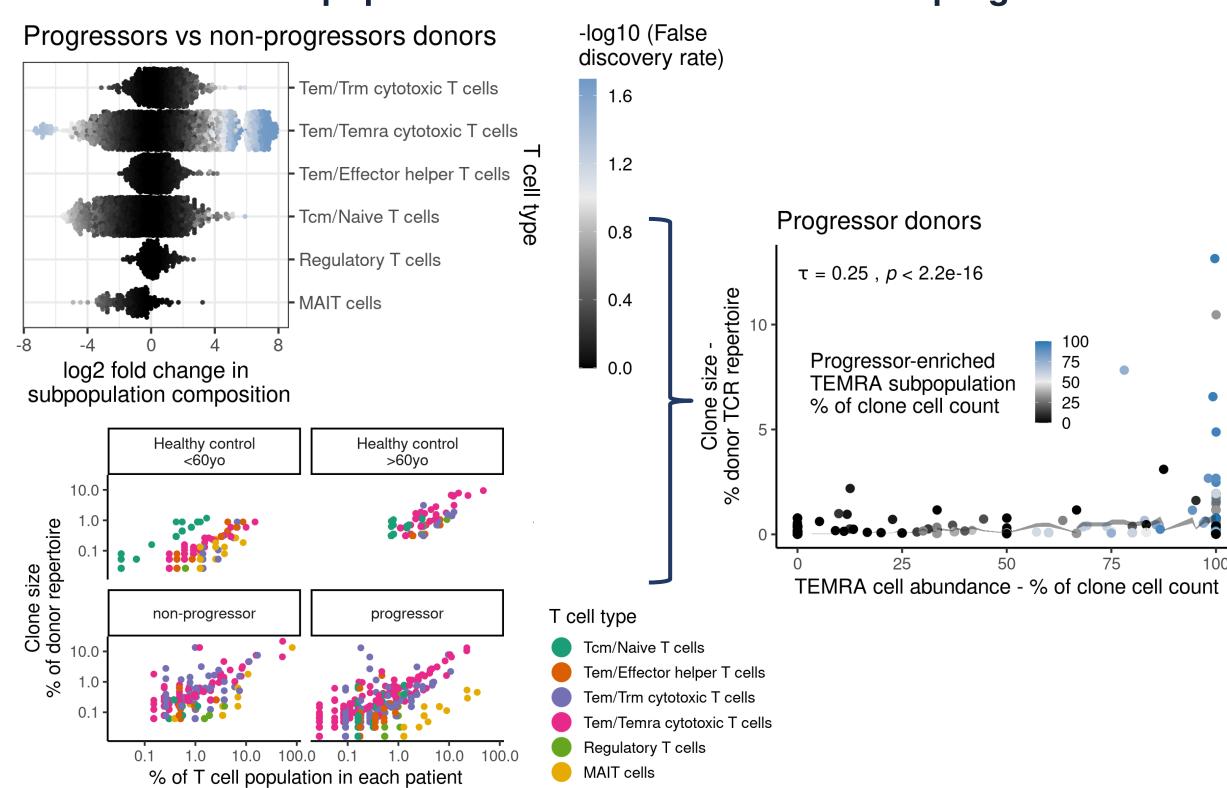

Acknowledgements & Contact

Oxford Molecular Diagnostic Centre & The Oncology Clinical Trials Office,
Department of Oncology, University of Oxford;
Oxford University Hospitals NHS Foundation Trust;
Cancer Research UK

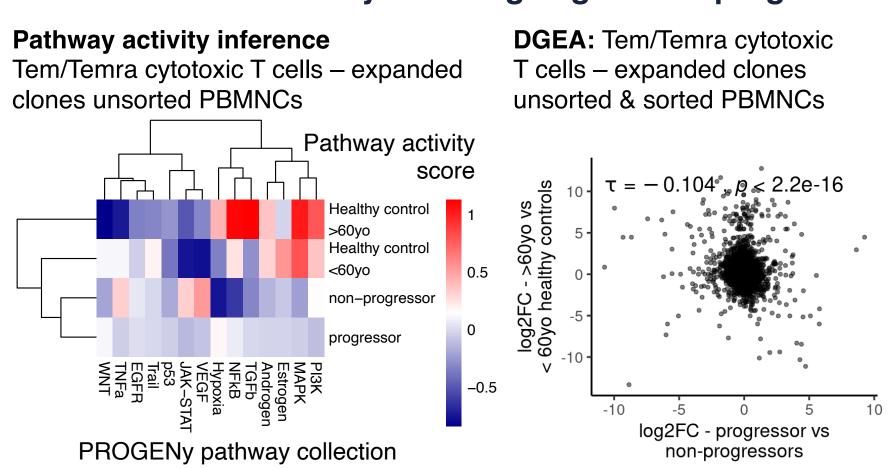
Contact: Grigore-Aristide Gafencu grigore.gafencu@oncology.ox.ac.uk

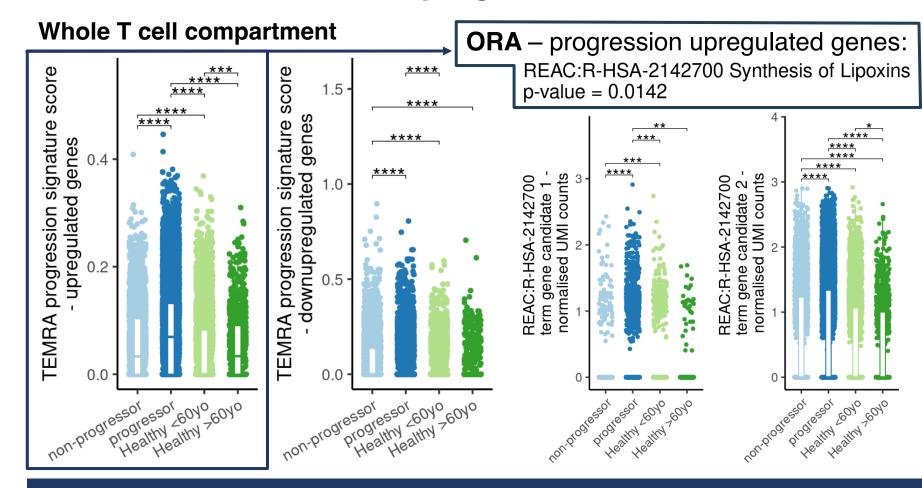

NB: QR codes to project partners' websites & not to electronic version of the poster

Methods



Results


CLL progression is associated with an expansion of TEMRA subpopulations in the context of clinical progression


References

1.Robbe, P. et al. 2022; 2.Purroy, N. et al. 2022; 3.Stoeckius, M. et al. 2017; 4.Man, S., Henley, P. 2019; 5.Mulè, M., Martins, AJ., Tsang, JS. 2022; 6.Hippen, A. et al 2021; 7.McGinnis, CS., Murrow, LM., Gartner, ZJ 2019; 8.Hao, Y. et al. 2021; 9.Shahsavari, A., Munteanu, A., Mohorianu, I. 2022; 10.Andreatta, M., Berenstein, AJ., Carmona, SJ. 2022; 11.Domínguez Conde, C. et al. 2022; 12.Sturm, G. et al. 2020; 13.Korsunsky, I. et al. 2019; 14.R Core Team 2023; 15.Hartigan, JA., Wong, MA. 1979; 16.Morgan, M., Dann, E. 2022; 17.Robinson, MD., McCarthy, DJ., Smyth GK. 2010; 18.Badia-i-Mompel, P. et al. 2022; 19.Kolberg, L. et al. 2020; 20.Andreatta M., Carmona, SJ. 2021; 21.Schubert, M. et al. 2018

The transcriptomic profiles of the TEMRAs in expanded clones differ in healthy donor ageing vs CLL progression

The TEMRA expanded clone progression transcriptomic signature highlights potential molecular correlates of CLL progression

Discussions & questions addressed by ongoing work

TEMRAs are a potential T cell subtype relevant for CLL/MBL prognosis.

- Is CLL progression a function of the inflammatory status?
- Is there a CLL-driven T cell response localized in the TEMRA compartment?
- Is the SHM status of the CLL major clone affecting the CLL T cell ecosystem?
- Are the progression-associated TEMRA genes useful as a costeffective prognostic marker?