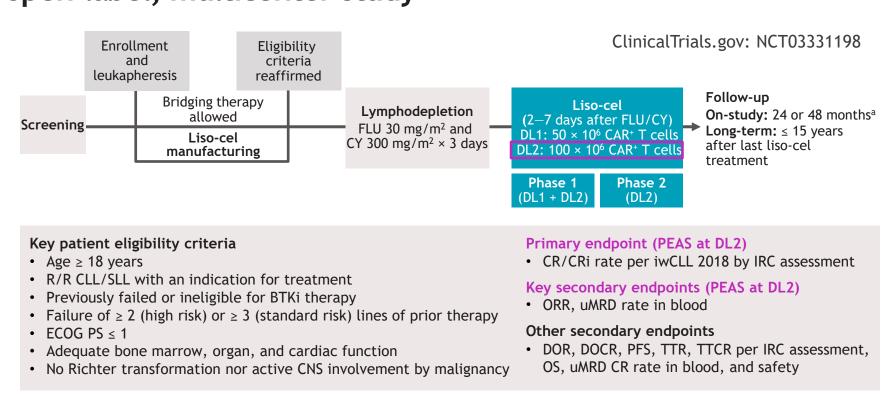
Lisocabtagene maraleucel in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: primary analysis of the phase 1/2, single-arm, multicenter TRANSCEND CLL 004 study

Tanya Siddiqi, MD,¹ David G. Maloney, MD, PhD,² Saad S. Kenderian, MB, ChB,³ Danielle M. Brander, MD,⁵ Heter A. Riedell, MD,⁵ Nirav N. Shah, MD,⁵ Rajneesh Nath, MD,⁵ Bita Fakhri, MPH, MD,¹0 Deborah M. Stephens, DO,¹¹ Shuo Ma, MD, PhD,¹² Tatyana Feldman, MD,¹³ Scott R. Solomon, MD,¹⁴ Stephen J. Schuster, MD,¹⁵ Serena K. Perna, MD,¹⁵ Serena K. Perna, MD,¹⁶ Sherilyn A. Tuazon, MD,¹⁷ San-San Ou, MS,¹⁷ Eniko Papp, PhD,¹⁷ Yizhe Chen, PhD,¹⁶ William Wierda, MD, PhD¹⁸

¹City of Hope National Medical Center, Duarte, CA, USA; ¹David and Etta Jonas Center for Cellular Therapy, University of Pittsburgh, PA, USA; ¹David and Etta Jonas Center for Center, Boston, MA, USA; ¹David and Etta Jonas Center for Center, University of Pittsburgh, PA, USA; ¹David and Etta Jonas Center for Cellular Therapy, University of Chicago, IL, USA; ¹David and Etta Jonas Center, Boston, MA, USA; ¹David and Etta Jonas Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; ¹David and Etta Jonas Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; ¹David and Etta Jonas Center for Cellular Therapy, University of Chicago, IL, USA; ¹David and Etta Jonas Center for Lymphoma, Massachusetts General Hospital Cancer Center, Duarte, Cancer Center, Boston, MA, USA; ¹David and Etta Jonas Center for Lymphoma, Massachusetts General Hospital Cancer Center, Duarte, Cancer Center, ⁸Medical College of Wisconsin, Milwaukee, WI, USA; ¹²Robert H. Lurie Comprehensive Cancer Center, Gilbert, AZ, USA; ¹⁴Northside of Northwestern University, Chicago, IL, USA; ¹⁴No Hospital Cancer Institute, Atlanta, GA, USA; 15 University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA; 16 Bristol Myers Squibb, Seattle, WA, USA; 18 The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Introduction

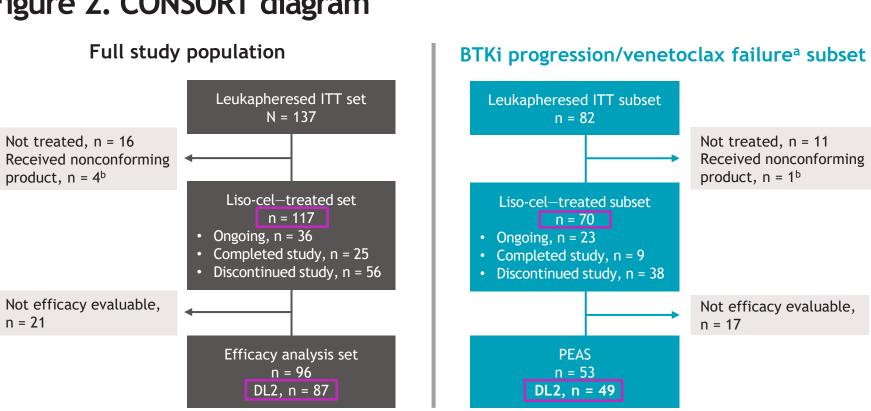

- Outcomes remain poor for patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) who have relapsed after prior Bruton tyrosine kinase inhibitor (BTKi) and venetoclax failure, with low complete response/remission (CR)/CR with incomplete marrow recovery (CRi) rates of 0%-5% and short median overall survival $(OS)^{1-6}$
- Real-world evidence indicates progressively worse outcomes as treatment options
- Median time from dual discontinuation of BTKi and venetoclax to subsequent treatment failure or

• Lisocabtagene maraleucel (liso-cel) is an autologous, CD19-directed, 4-1BB chimeric antigen

receptor (CAR) T cell product administered at equal target doses of CD8+ and CD4+ CAR+ T cells • Here we report the primary analysis of the liso-cel monotherapy portion of TRANSCEND CLL 004 (NCT03331198), with a median on-study follow-up of 21.1 months

Methods

Figure 1. TRANSCEND CLL 004 study design: phase 1/2, open-label, multicenter study



aDuration of follow-up was increased to 48 months in protocol amendment 5 (February 16, 2021). Patients still in ongoing response per iwCLL 2018 criteria after the 2-year follow-up were followed for safety, disease status, additional anticancer therapies, and survival for an additional 2 years or until progression. CY, cyclophosphamide; CNS, central nervous system; DL, dose level; DOCR, duration of complete response/remission; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; FLU, fludarabine; IRC, independent review committee; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; ORR, overall response rate; OS, overall survival; PEAS, primary efficacy analysis set; PFS, progression-free survival; TTCR, time to complete response/remission; TTR, time to response; uMRD, undetectable minimal residual disease.

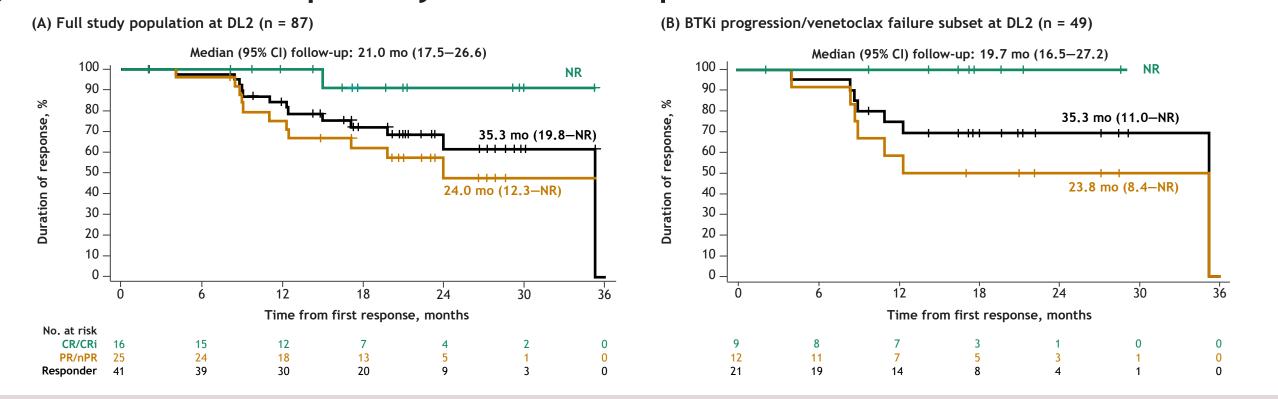
 Primary and key secondary endpoints were tested in a prespecified subset of patients with BTKi progression and venetoclax failure (PEAS) at DL2 by the following hierarchy: CR/CRi rate (null hypothesis $[H_0] \le 5\%$), ORR $(H_0 \le 40\%)$, and uMRD rate in blood $(H_0 \le 5\%)$ (Figure 1)

Results

Figure 2. CONSORT diagram

^aVenetoclax failure was defined as discontinuation of venetoclax due to disease progression or intolerability and met indications for further therapy per iwCLI 2018, or no objective response within 3 months of initiating venetoclax; bNonconforming product was defined as any product wherein one of the CD8 or CD4 cell components did not meet one of the requirements to be considered liso-cel but was considered appropriate for infusion.

- Of 137 leukapheresed patients, liso-cel was successfully manufactured for 131 patients and infused into 117 patients (Figure 2)
- Safety results are presented for the full study population of 117 patients who were infused with liso-cel, known as the liso-cel—treated set
- Efficacy results are presented for the 87 patients in the full study population and 49 patients in the PEAS who were treated at DL2


TRANSCEND CLL 004 met its primary endpoint, with a CR/CRi rate of 18% in patients with R/R CLL/SLL after BTKi progression/venetoclax failure, and demonstrated rapid, deep, and durable responses

- All minimal residual disease (MRD)—evaluable responders were uMRD in blood and marrow; 12 of 20 MRD-evaluable patients with SD were uMRD in blood; a majority of patients achieved uMRD by Day 30 (Table 2)
- In patients with CR/CRi, median DOR, PFS, and OS were not reached (Figures 3—5)

Table 2. Efficacy outcomes subset at DL2 Primary endpoint: IRC-assessed CR/CRi rate (95% CI) per iwCLL 2018, % 18 (9-32); $P = 0.0006^a$ 18 (11–28) Key secondary endpoints 43 (29–58); $P = 0.3931^a$ IRC-assessed ORR (95% CI), % 63 (48–77)^b 59 (44–73) uMRD rate in blood (95% CI), % 64 (53-74) Exploratory endpoint: uMRD rate in marrow (95% CI), % 59 (48–69) Other secondary endpoints Best overall response, n (%) 9 (18) PR/nPR 25 (29) 12 (24) 21 (43) 6 (7) 4 (8) 6 (7) 3 (6) 1.5(0.8-17.4)1.2 (0.8–17.4) Median (range) time to first response, months Median (range) time to first CR/CRi, months 4.4(1.1-17.9)3.0(1.1-6.1)

 a One-sided P value from binomial exact test (H₀ of CR/CRi \leq 5%; H₀ of ORR \leq 40%); bP value not presented for uMRD rate in blood (H₀ \leq 5%) because the ORR hypothesis was not rejected at 1-sided 2.5% significance level.

Figure 3. Duration of response by best overall response

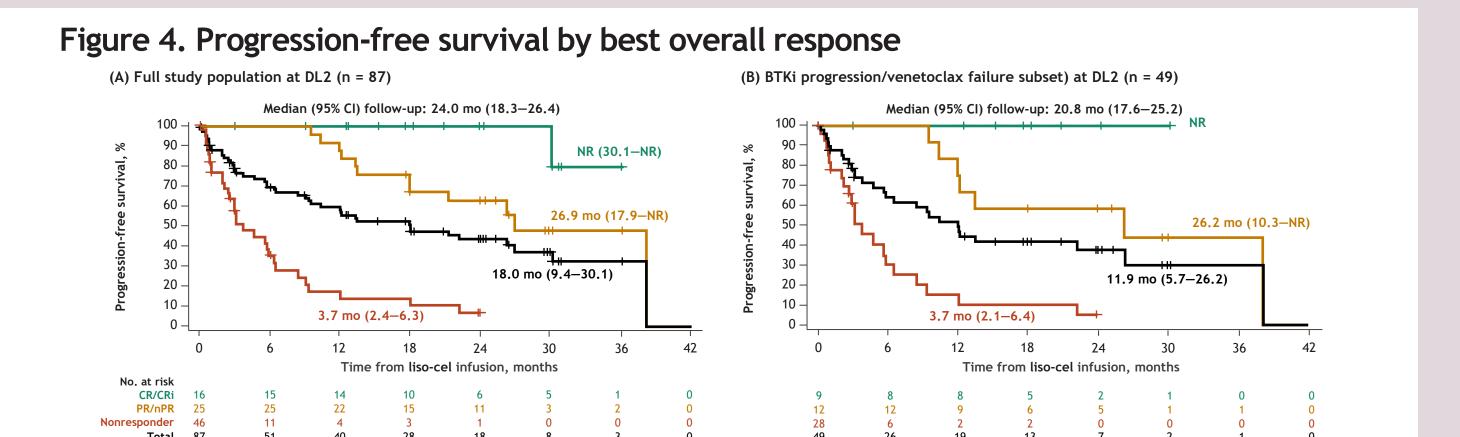
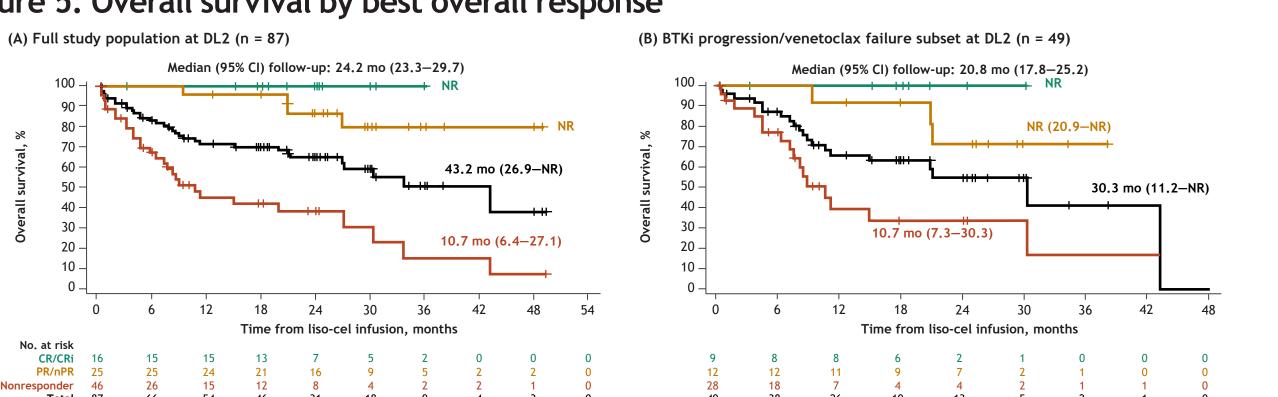
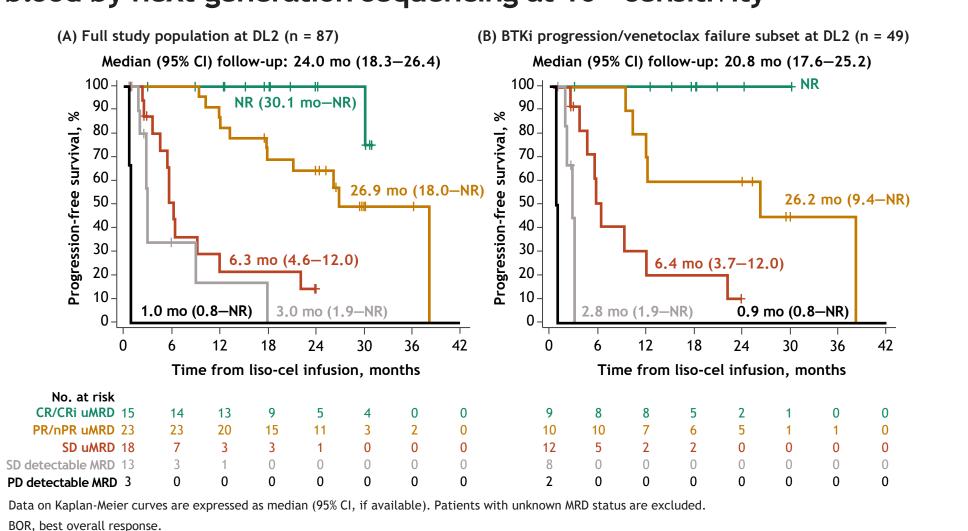



Figure 5. Overall survival by best overall response



Characteristic	Full study population (n = 117)	BTKi progression/venetoclax failure subset (n = 70)
Median (range) age, y	65.0 (49–82)	66.0 (49–78)
Median (range) prior lines of systemic therapy	5 (2-12)	5 (2-12)
Bulky lymph nodes, a n (%)		
Yes	52 (44)	32 (46)
Unknown	9 (8)	8 (11)
High-risk cytogenetics, n (%)	97 (83)	60 (86)
Prior BTKi, n (%)	117 (100)	70 (100)
BTKi refractory ^b	103 (88)	70 (100)
BTKi relapsed ^c	2 (2)	0
BTKi intolerant only	12 (10)	0
Prior venetoclax, n (%)	94 (80)	70 (100)
Venetoclax refractory ^b	89 (76)	67 (96)
Venetoclax relapsed ^c	0	0
Venetoclax intolerant only	4 (3)	3 (4)
Prior BTKi and venetoclax, n (%)	94 (80)	70 (100)
BTKi progression/venetoclax failure,d n (%)	70 (60)	70 (100)
Received bridging therapy, n (%)	89 (76)	55 (79)

Defined as \geq 1 lesion with the longest diameter of \geq 5 cm; Defined as no response or progression \leq 6 months from last dose of therapy; Defined as disease progression in a patient who previously had CR/CRi or PR/nPR for ≥ 6 months; dIncluding patients who progressed on a BTKi and met one of the following: (1) discontinued renetoclax due to disease progression or intolerability and patient's disease met indications for further therapy per iwCLL 2018, or (2) failed to achieve an objective nPR, nodular partial response/remission; PR, partial response/remission.

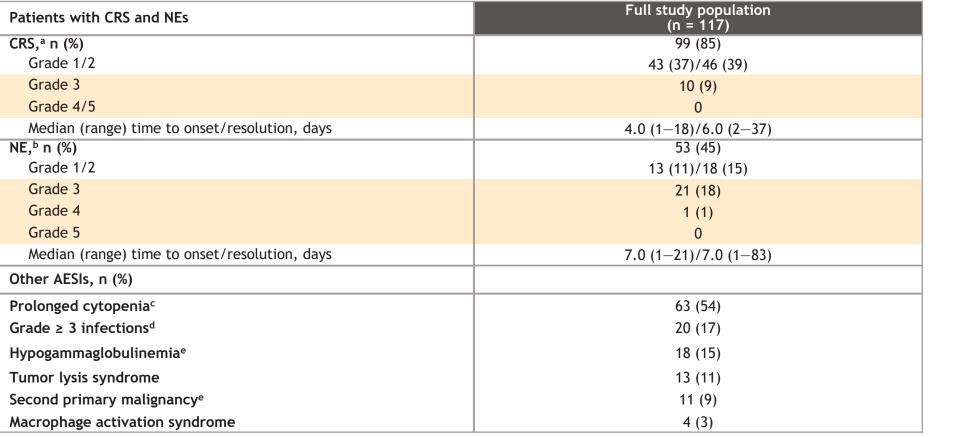

- In the full study population of 117 patients, median age was 65 years, 44% of patients had bulky lymph nodes, and 83% had high-risk cytogenetics (Table 1)
- Patients had a median of 5 prior lines of therapy, including BTKi in 100%
- Eighty-eight percent of patients were refractory to BTKi, 76% were refractory to venetoclax, and 60% had BTKi progression and venetoclax failure
- Seventy-six percent received bridging therapy during liso-cel manufacturing; presence of measurable disease was reconfirmed before receiving liso-cel

Figure 6. Progression-free survival by BOR and MRD status in blood by next-generation sequencing at 10⁻⁴ sensitivity

- In exploratory analyses of PFS by uMRD in blood, median PFS was around 26–27 months in patients with uMRD and < 3 months in those with detectable MRD in both population sets
- The most common grade ≥ 3 TEAEs (≥ 40%) were neutropenia (61%), anemia (52%), and thrombocytopenia (41%)

Table 3. Adverse events of special interest

^aCRS was graded based on the Lee 2014 criteria; ^bNEs were defined as investigator-identified neurological AEs related to liso-cel; ^cDefined as grade ≥ 3 laboratory abnormalities of neutropenia, anemia, and/or thrombocytopenia at Day 30 after liso-cel infusion; dIncludes grade ≥ 3 TEAEs from the infections and infestations (System Organ Class) by AE highlevel group term; eAEs from the 90-day treatment-emergent period, posttreatment-emergent period, and long-term follow-up were included. AE, adverse event; AESI, adverse event of special interest; CRS, cytokine release syndrome; NE, neurological event; TEAE, treatment-emergent adverse event.

- CRS was reported in 85% of patients (grade 3, 9%; no grade 4 or 5 events) and NEs were reported in 45% of patients (grade 3, 18%; grade 4, 1%; no grade 5 events; **Table 3**)
- A total of 81 (69%) patients received tocilizumab and/or corticosteroids for management of CRS and/or NEs Five deaths due to TEAEs were reported
- 4 considered unrelated to liso-cel by investigators (respiratory failure, sepsis, *Escherichia coli* infection, and invasive aspergillosis)

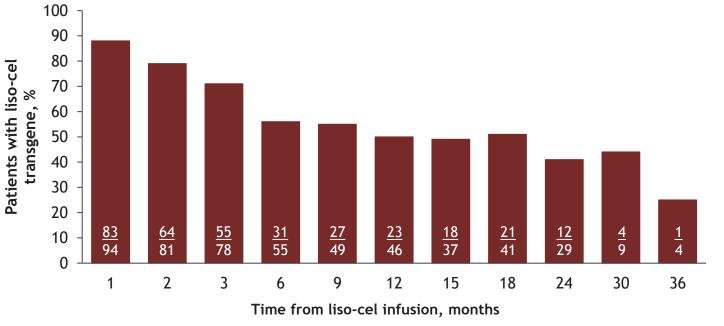

1 considered related to liso-cel by investigators (macrophage activation syndrome)

Table 4. Liso-cel cellular kinetics by qPCR at DL2

	Cellular kinetic set at DL2 (n = 89)	
Median (IQR) C _{max,} copies/μg	79,338.0 (29,895.0—184,172.0) 14.0 (10.0—14.0)	
Median (IQR) t _{max} , days		
Median (IQR) AUC _(0-28d) , day*copies/μg	693,864.1 (221,422.7—1,765,580.9)	

AUC_{(10-28th}, area under the curve from 0 to 28 days after infusion; C_{max}, maximum expansion; IQR, interquartile range; qPCR, quantitative polymerase chain reaction

- Liso-cel exhibited rapid expansion with a median time to maximum expansion of 14 days after
- Figure 7. Persistence of liso-cel in blood by qPCR at DL2a

^aData are number of patients with liso-cel persistence/number of patients with an available sample at the specific time point. Persistence was defined as a transgene count ≥ lower limit of detection (5 copies/reaction). Concentration values after the initiation of retreatment of liso-cel (including lymphodepletion) or after another anticancer treatment were excluded.

• Persistence of the liso-cel transgene was detected up to 36 months after liso-cel infusion in 1 of 4 evaluable patients (Figure 7)

Conclusions

- A single administration of liso-cel demonstrated rapid, deep, and durable responses in patients with R/R CLL/SLL
- The study met its primary endpoint, with a CR/CRi rate of 18% in patients with R/R CLL/SLL after BTKi progression/venetoclax failure, which compares favorably with historical CR/CRi rates of 0%-5%1-7
- Liso-cel achieved high uMRD rates in both blood (63%) and marrow (59%)
- Efficacy outcomes were similar in the full study population (R/R CLL/SLL after prior BTKi), demonstrating a clinical benefit of liso-cel in this broader population
- Functional CAR T cells were successfully manufactured and demonstrated expansion and persistence in most patients
- Higher liso-cel expansion was observed in responders and patients with uMRD
- The safety profile was manageable, with low rates of grade ≥ 3 CRS and NEs
- Overall, these results support liso-cel as a potential new treatment option for R/R CLL/SLL

References

- 1. Patel K, et al. *J Hematol Oncol* 2021;14:69.
- 2. Sedlarikova L, et al. Front Oncol 2020;10:894.
- 3. Lew TE, et al. *Blood Adv* 2021;5:4054–4058.
- 4. Jones J. et al. *Blood* 2016:128:637.
- 5. Mato AR, et al. Clin Cancer Res 2020;26:3589-3596
- 6. VENCLEXTA® (venetoclax) [package insert]. North Chicago, IL: AbbVie Inc.; June 2022.
- 7. Mato AR, et al. Clin Lymphoma Myeloma Leuk 2023;23:57—67.

Acknowledgments

- We would like to thank the patients, caregivers, investigators, and study personnel
- This study was funded by Juno Therapeutics, a Bristol-Myers Squibb Company
- All authors contributed to and approved the presentation; writing and editorial assistance were provided by Emily Burke, PhD, and Jeremy Henriques, PhD, CMPP, of The Lockwood Group (Stamford, CT, USA), funded by