ESTIMATING THE FINANCIAL VALUE OF WOUNDS FROM THE BOTTOM-UP PEN WOUND RESEARCH Zwelithini Tunyiswa, BA | Ryan Dirks MS, PA, CWS | Robert Frykberg, DPM, MPH

Introduction

Estimating the financial value of treating patients with chronic wounds is important for stakeholders in the wound care ecosystem. Current methods take a top-down or macro-economic approach, with limited usefulness at the microeconomic level. These top-down approaches also ignore patient heterogeneity, which leads to a milieu of inferential problems.

We propose the use of a probabilistic latent attribution model, which requires only transactional data and uses stochastic processes to account for patient heterogeneity, at the microeconomic (patient) level. Given that the estimates are provided at the patient level, it becomes trivial to aggregate the forecasts to arrive at cohort level metrics of interest.

Models such as these will be necessary as major payers shift their payment methodologies to value-based care. To wit, CMS, in its 2021 Strategy Refresh, stated explicitly that it wants all Medicare and the vast majority of Medicaid beneficiaries to be in a care relationship with accountability for quality and total cost of care by 2030.

The Model

The model makes the following assumptions about the patient encounter and drop-out process:

- ✤ When still treating, the patient generates encounters according to a Poisson process with rate λ
- Each patients treats for a lifetime which has an exponentially distributed duration with a fallout rate of μ
- The encounter rate λ for the different patients is distributed according to a gamma distribution across the population of patients
- \bullet The drop-out rates μ are distributed according to different gamma distributions across patients
- Encounter rates λ and fallout rate μ distributed independently of each other

THE ANALYTICAL WORKF

Patient Lifetimes

- Lifetimes are the linear representations
- They consist of observed and unobserv encounters in the past and unobserved
- Patients generate encounters at difference regular, some irregular, some regular at
- This makes it difficult to say with absolution will treat in the future
- Instead of being deterministic, we must ac think probabilistically, and infer a probabil encounter at some timepoint in the future

Examples of the Lifet

Cohorting

- Cohorts are a group of patients that began treatment in the same epoch (e.g. a calendar month)
- This places patients in a group where their membership never changes
- This allows for tracking of behavior of the cohort over time
- And allows for comparison of different heterogenous cohorts over a common and normalized timescale

$\rightarrow \rightarrow$	1. Obtain transactional data, then cohort by tim						
	Cohort Month	Patient ID	Date	Payment			
	May-22	6441	2022-05-17	81.53			
	May-22	6441	2022-05-31	43.93			
	May-22	6441	2022-06-07	43.93			
	May-22	6441	2022-06-21	43.93			
entencounters	May-22	6441	2022-06-28	43.93			
	May-22	6441	2022-07-05	43.48			
bserved	May-22	6441	2022-07-12	43.48			
	May-22	27606	2022-05-26	59.41			
re	May-22	27606	2022-05-31	66.27			
	May-22	27606	2022-06-02	96.63			
nts are	May-22	29129	2022-05-27	123.4			
	May-22	29129	2022-06-03	63.23			
r	May-22	29129	2022-06-10	63.23			
	May-22	29129	2022-06-24	55.08			
ationt	May-22	29352	2022-05-26	37.93			
Jalient	May-22	29352	2022-08-26	49.53			
	May-22	29352	2022-09-02	37.55			

cknowledge uncertainty and	2. Generate RFM Summary & Train Model			<u>/lodel</u>	5. Generate Cohort Level Predictions using Patient Level Prediction					
ity that a natient will have an	Patient ID	Frequency	Recency	Т						
	6441	6	8	34	Cohort Matric	Valua				
2	24117	5	10	36		alue				
	25570	4	4	33	Predicted Future still Treating Patients week 26	95				
imes of Patients	27287	3	7	34	Predicted Future Encounters up to week 26	590				
	27481	4	5	33	Predicted Future Encounters up to Infinity	731				
	27606	1	1	33		45.025				
	28996	4	4	32	Predicted Future Lifetime value of Conort \$	45,835				
	28997	2	2	32						
	29049	3	10	33	A Not only can one aggregate Datient Lovel Dredictions at	the de				
	29081	3	3	25	* Not only can one aggregate Patient Level Predictions at	the gio				
	29087	5	5	32	one can also append individual level data, such as demographic other data, and aggregate at those levels as well.					
	29103	4	4	33						
Future	29109	2	23	34						
	29118	1	6	21						
	29119	1	1	22	Comparisons can be made within and between cohorts	; at glob				
	29125	2	3	27	global levels.					
	29129	3	4	33.						

3. Validate the Model

A practice is approached by a payer who offers a population value- based arrangement. For the cohort above, the payer offers \$40,000 for 26 weeks of services. Using the Predicted Future Value of the the Cohort of \$45,835, the Practice can refuse the offer, and counter appropriately ✤ A wound care product supplier wants to understand which patients among its patient base will require the most product in the future, for logistical and support purposes. The supplier can use the patient level predictions (merged with location data) of Predicted Conditional/Unconditional encounters to proactively allocate resources to meet future demand. ✤ A home-health agency wants to allocate wound care nurses to manage its value-based contract. Management can use the patient-level predictions of Predicted Conditional/Unconditional encounters to identify patients most likely to require the most wound-care services. This allows for a financial risk-stratification, in conjunction with clinical risk-stratification.

4. Generate Patient Level Predictions

	Probability	Predicted	Predicted	Estimated		Predicted	
Patient	still	Conditional	Unconditional	Average		Patient	
ID	Treating	Encounters	Encounters	Revenue		Lifetime Value	
12669	0.3%	0.0	0.0	\$	38.48	\$	0.82
23815	0.0%	0.0	0.0	\$	75.63	\$	0.07
24618	1.4%	0.1	0.1	\$	54.10	\$	5.89
26966	5.0%	0.3	0.4	\$	258.29	\$	105.52
27492	93.4%	5.6	6.9	\$	53.85	\$	372.29
29672	0.1%	0.0	0.0	\$	75.63	\$	0.35
30153	1.9%	0.1	0.2	\$	55.00	\$	8.37
30174	1.6%	0.1	0.1	\$	49.16	\$	6.14
30275	0.3%	0.0	0.0	\$	59.34	\$	1.14
30280	0.0%	0.0	0.0	\$	75.63	\$	0.07
30287	0.2%	0.0	0.0	\$	53.75	\$	0.79
30288	23.9%	1.5	1.9	\$	37.18	\$	69.61
30393	42.8%	2.7	3.3	\$	61.26	\$	203.52
30395	0.2%	0.0	0.0	\$	43.61	\$	0.64

bal level, , clinical or

al or sub-

3. Utilize the Predictions to make decisions