Introducing a Low-Cost Tele-Retinal Camera for Diabetes-Related Retinopathy Screening in **Resource-Constrained Settings**

Laurel Chen¹, Asma Farooqui¹, Anjitha Saji^{1,2}, Haruto Sasajima¹ 1. Department of Bioengineering, Rice University, Houston, TX, 2. McGovern Medical School, UTHealth, Houston, TX | innoscopegmi@gmail.com

Clinical Motivation: Low-Resource Clinics Need Affordable Retinal Cameras

• Diabetic retinopathy (DR) is **preventable** with early eye screenings¹

• However, **80%** of diabetics in low-resource settings (LRS)² remain **unscreened** due to:

Proposed Technological Solution

Design a low-cost retinal camera for accessible, early screening of diabetic retinopathy (DR), to reduce the prevalence of **blindness** in diabetics in low-resource settings (LRS).

Normal Eye

Methods and Key Design Objectives

- Interviewed 20+ physicians and optical experts
- Created 19 design inputs
- Used **ISO 13485** and ISO 10940 to guide testing protocols
- Performed usability testing with primary care providers (PCPs) in outpatient clinic

IMAGE QUALITY^{2,5}

- Image resolution is $\leq 40 \ \mu m$
- Image field of view is **30-50**°

COST AND USABILITY

Ease-of-use is \geq 3 on user-defined scale

SAFETY AND OPERATION TIME⁵

Battery has > 4 hr. of standby power

Light intensity is safe (< 70,000 lux)

Innoscope: A Portable Camera that Efficiently Captures Retinal Images for DR Screening

Innoscope Resolves DR Microaneurysms, Safely Illuminates the Retina, and is Clinically Usable by PCPs

Image Quality

Figure 1. Average image resolution. Innoscope was maneuvered and smallest resolvable size was recorded for front/back (n=24) and left/right (n=24).

Figure 2. Example image of USAF1951 resolution target taken by the Innoscope.

Conclusions and Impact

- Protects vision of **200 million diabetics**
- Clinics save up to \$19,500 per camera
- Portable, efficient, and easy-to-use by nurses

- Used *ISO 10940* to
- measure field of view
- Angle found using: tan⁻¹(diameter/1000) Resolution measured
- based on smallest distinguishable bars on USAF1951 target.

43° FIELD OF VIEW

Current Handheld 4 hr Retinal Camera

Innoscope

61,000 lux **MAXIMUM LIGHT INTENSITY**

Thank you to UTHealth School of Public Health's Dr. Joseph McCormick and Edward Yao, and to our mentors: Dr. Madhavi Reddy, Jiawei Lu, Joseph Bailey, Hae Won Jung, Dr. Matthew Wettergreen, and Prof. Casey Howard.

• <u>Next steps</u>: Fine-tune illumination system, continue clinical studies. File provisional patent.

RICE UNIVERSITY Department of Bioengineering

UTHealth shool of Public Health

Acknowledgements and References

han, C. D. Frost, and N. J. Wald, "Prevention of blindness by screening for diabetic retinopathy: a quantitative assessment.." BMJ. vol. 299. no. 6709. pp. 1198–1201. Nov. 1989.

, "The state of diabetes treatment coverage in 55 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 680 102 Sabanayagam, "Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence," Ophthalmologica, vol. 243, no. 1, pp. 9–20, 2020

[5] 14:00-17:00, "ISO 10940:2009," ISO. https://www.iso.org/standard/39140.html (accessed Feb. 15, 2023) [6] https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/1 (accessed Jul. 13, 2023)