DEFINING THE FUTURE OF ENERGY WITH MICROGRIDS

A solution to add more resiliency and profitability while decarbonizing US energy infrastructure

WHY DO MICROGRIDS MATTER?

Reliable and Flexible

Microgrids are designed to provide uninterrupted, 24/7 power and to balance load demands for an organization with changing power needs.

Resilient

Enhances resiliency with seamless islanding and providing power even if there is a utility outage

Reduced Carbon Footprint

Comprehensive integration of renewable energy to meet climate protection targets that reduce CO₂ emissions

Cost Optimizations

Utilizing the best mix of energy resources to ensure cost optimized solution especially by curtailing power from utility grid during peak hours and participating in energy market

More Secure

Since Microgrids are dependent on local assets to meet

MICROGRIDS APPLICATIONS

Microgrids provide different goals for different customers some of which are:

SHOPPING CENTER

Minimize CO₂ footprint

CITY DISTRICT

Cross Commodity Control

linimize Fuel Consumption

Automatic Operation

MICROGRID CONTROLLER

Microgrid controller is the heart of a Microgrid. It allows a quick and easy integration, combining various conventional and renewable generation and energy storage devices. Thus, intelligently controlled energy mix allows a robust, safe and economical operation of the microgrid.

It provides flexible communication, seamless continuity, maximum security, and no limitation during the migration.

Green Mode → Minimum Emissions	 Max renewable share Avoid rotating assets Optional BESS usage
Economic Mode → Minimum Costs	 Energy Tariff (Grid) Costs of different assets Max. renewable share
Reliable Mode → Minimum Reliability	 Max. SOC of BESS Rotating Assets CO2 reduction limited

MICROGRID KEY ELEMENTS

Utility Point of Interconnection POI

POI serves as primary source of power. Microgrids can be "islanded" or disconnected from the traditional grid during a natural disaster or cyber threat.

Energy Storage

Batteries store excess energy and save it for later use thus keeping power always in hand.

Controllable Generation

Nonrenewable, fossil-fuel energy sources may include biogas, fuel cells, or gas turbine engines. They provide stable and necessary levels of voltage and frequency to the system.

Non-Controllable Generation

These intermittent fuel sources fluctuate based on factors such as the weather. Examples include solar or wind power generated by photovoltaic and wind turbine products.

Loads

Both electrical and thermal loads can be controlled via Microgrid Controller depending on customer requirements

MICROGRID KEY FUNCTIONS

- Asset Monitoring
- Blackout Detection, Black Start, and **Automated-Grid Modes**
- Automatic Start/Shedding of Generators
- Generation Offsetting and Balancing
- Peak Shaving
- Integration with EV Infrastructure
- Load Shedding and Restoration
- Reserve Management
- State-of-Charge Management
- Load/Generation Forecasting
- Integration of Thermal Assets
- Energy and Ancillary Services Markets

Microgrid Lab in Princeton, NJ, USA

Resilient, Cost-effective and Carbon Neutral Microgrid Campus

Monetize **Excess Energy** Generate funding opportunities

by selling excess energy back to the grid. Optimize grid control and building energy management

EV 🥟 Integration

This microgrid also integrates multiple electric vehicle (EV) charging stations located in the adjacent parking lots and made vailable to building employees free of charge.

Feasibility **Studies**

Before any products were ordered, numerous configuration options were simulated to best optimize the size of solar cells and storage batteries, based on current and future demands Siemens PSS (Portfolio Power System)

Energy

Savings

Microgrid Manager

Eco & Reliable Mode

Improve resilience,

drive energy savingsSiemens SICAM

• Select from Green,

Peak-shaving

The energy storage system

has a capacity of approximately 1MWh. With the normal building

load ranging between 400 and

500 kilowatts (kW), the building

energy needs can rely solely on

the battery for a period between

On-Site

Storage

two to three hours.

VALUE PROPOSITIONS

Economic & Energy efficiency Capex vs Opex Distributed generator control Load/storage control

Reliability, resilience Black start

Network synchronization Online Control via HMI/Grid Monitoring and Control **Enhanced SCADA functionality**

Sustainability

Generation/load forecast Dynamic grid constraint consideration using state estimator function

PRINCETON ENERGY ANALYTICS DASHBOARD

Solar Energy 1 Day 1 Week <u>1 Month</u> 1 Year

315 kW 0123 **O** kW xxxxxxxx Æ 80 kW olar Energ

5,532 kwh **Actual Generated**

Living Microgrid Lab

The Siemens Princeton Island Grid project, created a "living lab", designed to address the challenges of resiliency, carbon neutrality and cost-effectiveness.

Through storms and outages, power remained stable and secure.

Building Efficiency

Building management systems are rarely, if ever integrated into microgrids. Here, the Princeton living lab sets a new precedent. Digital twin simulation is used to optimize the energy consumption of the building.

ŝ

3

418

Purpose **PV** Panels

Dual purpose photovoltaic (PV panels) - Solar Dual panels generate the main source of energy for the facility and also act as a roof that shields parked automobiles from outdoor weather elements • Solar panels currently supply 60% of the facility's energy

The Princeton Island Grid Dashboard uses simple visual language to visualize the energy flow between renewable energy sources, the power grid energy storage and energy consumers of a campus microgrid.

