

GENDER DIFFERENCES IN PERFORMING CONSTRAINED AND UNCONSTRAINED UPPER QUARTER Y-BALANCE TESTS

Michelle Etchebaster, Tal Amasay & Samuel Vilmeau

Department of Sports & Exercise Sciences, Barry University, Miami Shores, FL

Introduction

- ❖The Upper Quarter Y-Balance Test (UQYBT) is a functional mobility test that evaluates unilateral upper body function to identify risk factors for injury or poor performance.
- The reliability of the UQYBT as an instrument to assess shoulder girdle function has been established.
- ❖ Yet, it is not clear the contribution of thoracic rotation range of motion (ROM) and upper body strength to the performance in constrained and unconstrained UQYBT within gender.

Purpose

❖To investigate the relation between trunk mobility and upper body strength with constrained and unconstrained UQYBT reach scores within gender.

Methods

- ❖14 male and 14 female college students participated in two testing sessions.
- ❖ 1st session: participants performed maximal pushup test and maximal seated trunk rotation mobility test.
- ❖2nd session: consisted of two UQYBT protocols, constrained (CUQYBT) with straight supporting arm and no hip flexion, and unconstrained (UCUQYBT) in which elbow and hip flexion were allowed.
- ❖ Participants performed three reaches in the medial (MR), inferolateral (IR), and superolateral (SR) directions in each protocol.

Methods (Cont.)

- Maximal relative reach scores in each direction were identified.
- Paired t-tests were performed to compare the scores per gender.
- ❖ Maximal trunk rotation ROM and the maximal pushup score within gender were correlated with the reach scores for each UQYBT protocol, using Pearson correlation. Significance levels were set to 0.05.

Results

- ❖Female participants performed 30±8 pushups and trunk rotation of 135±26 deg, whereas male did 50±14 pushups and trunk rotation of 136±14 deg.
- ❖Males had higher significant reach scores in the UCUQYBT than CUQYBT (p-values<0.001), for both the dominant and non-dominant for all 3 reaches:</p>
- ❖MR dominant (102±12.2 vs 87±9.1 cm), non-dominant (104±11 vs 88±6.9 cm); IR dominant (101±11.5 vs 71±8.6 cm), non-dominant (101±12.1 vs 71±9.2 cm); SR dominant (67±10.4 vs 59±10.5 cm), non-dominant (71±11.2 vs 62±10.7 cm).

Unconstrained UQYBT Medial Reach

Unconstrained UQYBT Inferolateral Reach

Figure 1. Reach Scores Differences in Males and Females.

Results (Con.)

- ❖ Similar was observed in females for the dominant side, UCUQYBT had higher reach scores than CUQYBT (p-values<0.001):
- ❖MR (94±8.5 vs 82±7.5 cm); IR (93±9.7 vs 67±8.3 cm); SR (65±10.7 vs 56±10.7 cm).
- ❖Whereas in the non-dominant side the same was observed only in IR (93±7.6 vs 67±1 cm), p-values<0.05.</p>
- ❖Pearson correlation identified moderate positive correlation (r=0.54, p-value<0.05) between trunk ROM and IR in the UCUQYBT for dominant side and strong correlation (r =0.71, p-value<0.01) for non-dominant side, in males.
- No significant correlations between trunk ROM and reach scores were observed for females.

Conclusion

- ❖The main finding of this study established the substantial difference in reach scores between CUQYBT and UCUQYBTs for both genders.
- Moreover, it seems that greater trunk mobility is associated with superior UQYBT reach scores in males, whereas greater trunk mobility in females did not influence performance.

Practical Application

*Sport practitioners should pay close attention to the protocol in place when testing upper body functionality with the UQYBT and when comparing reach scores from various sources.