Using Momentum to Optimize Loaded Jump Training: A Model Statistic Approach Luke D. Chowning¹, Katie Harris², Mia Hite², & John R. Harry² ¹Dakota State University, Madison, SD ²Texas Tech University, Lubbock, TX

UNIVERSITY

Introduction

- Loaded jumps (LJs) are a simple alternative to other exercises.
- Power metrics are commonly used to assess effectiveness of LJs¹.
- Momentum might be a useful metric to consider².
- Traditional group-level statistics may overlook results that are critical in training application.

Purpose

• To compare peak power and momentum in unloaded countermovement vertical jumps (CMVJ) with light and heavy loads in different loading conditions.

Methods

- A convenience sample of 15 males and 5 females were recruited.
- Subjects were recreationally active, healthy, and could back squat (BS) at least 1.5x body mass.
- Two visits to the lab: anthropometric data and 1RM BS data was collected during 1st visit. Kinetic data collection of 4 jumps in each condition were collected during 2nd visit.
- Trial conditions included CMVJ with no added load (UL), a straight barbell placed across posterior aspect of trapezius with 20% and 60% of 1RM BS (SBJ20 and SBJ60, and with a hexagonal barbell held at arms' length with 20% and 60% of 1RM BS (HBJ20 and HBJ60).
- UL was completed first, followed by the 20% conditions, followed by the 60% conditions.
- Loading modality was counterbalanced.
- A one-way, within-subjects repeated measures ANOVA was used for the group-level statistics.
- The *Model Statistic*³ was used to assess differences at the individual level.

Researchers and strength coaches can use momentum to assess training effectiveness of loaded jumps on an individual basis.

Table 1.	Group-Level	Results fo	r Jump F	leight, I	Moment
				0 /	

•					
Variable	Unloaded	SBJ20	HBJ20	SBJ60	HBJ60
v ariable –	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD
Jump Height (m) ^a ,	0.44 ± 0.10	$*0.23\pm0.05$	$*0.26 \pm 0.06$	$*0.08 \pm 0.03$	$*0.08 \pm 0.04$
Momentum (kg·m·s ⁻¹)ª,	253.05 ± 67.17	258.18 ± 68.57	268.89 ± 65.83	$*202.79 \pm 54.86$	$*191.98 \pm 54.81$
Peak Power (N·s ⁻¹ ·kg ⁻¹) ^a	69.77 ± 12.34	$*43.71 \pm 8.01$	*44.93 ± 7.35	$*25.08 \pm 4.66$	$*25.34 \pm 4.43$

Table 2. Individual-Level Results for Momentum Across all Conditions

Participant -	Unloaded		SBJ20		HBJ20		SBJ60		HBJ60	
	Mean:	SD:	Mean:	SD:	Mean:	SD:	Mean:	SD:	Mean:	SD:
1	410.12	13.41	396.63	10.85	397.56	23.09	314.90	30.71	306.16	7.82
2	237.43	4.96	241.92	8.31	^277.45	5.38	208.25	15.23	225.27	24.48
3	374.44	8.33	381.51	56.68	370.45	6.00	253.81	17.29	225.34	24.67
4	284.36	6.84	^320.58	6.50	^341.01	16.55	276.53	23.27	273.91	12.90
5	305.92	10.22	^353.62	10.54	^356.98	15.10	258.31	20.22	227.44	17.77
6	314.73	4.26	308.09	17.56	299.32	12.88	247.07	9.72	221.59	18.52
7	276.29	12.43	290.89	12.24	^324.08	12.80	133.82	16.16	221.20	9.65
8	240.15	9.41	235.24	4.86	258.71	21.44	208.66	11.92	213.93	8.17
9	270.61	10.32	272.53	6.04	^294.16	8.42	208.85	5.19	175.30	23.86
10	209.73	3.06	^228.97	5.99	^233.83	6.63	211.10	1.04	152.03	9.13
11	159.75	5.27	145.58	36.25	165.39	6.91	115.36	5.19	88.38	2.83
12	200.87	9.14	200.58	6.62	^221.07	7.31	143.07	17.52	188.06	11.58
13	221.71	5.94	179.33	9.10	214.70	6.99	113.36	10.88	113.69	20.64
14	198.15	4.16	205.95	8.93	193.43	1.32	164.32	14.35	143.31	8.18
15	216.28	12.78	210.43	8.58	214.94	9.25	189.77	6.32	142.77	8.86
16	294.68	8.70	283.08	13.99	313.35	18.96	258.67	18.69	248.27	13.21
17	277.81	12.19	273.83	10.50	252.45	12.34	195.63	14.28	142.80	31.30
18	242.42	4.00	247.50	7.25	246.43	2.92	215.86	9.73	210.71	9.13
19	168.58	9.47	^194.08	6.17	^206.24	7.99	178.00	7.77	153.60	10.17
20	156.95	6.26	^193.11	6.37	^196.24	8.86	160.48	4.20	165.82	19.01
Group	253.05	67.17	258.18	68.57	268.90	65.83	202.79	54.86	191.98	54.81

tum, and Peak Power

Results

- At the group level, jump height and peak power was lower in all loaded conditions compared to UL (Table 1).
- There was no statistical difference between UL and SBJ20 along with HBJ20 at the group level (Table 1).
- Individual-level analysis revealed that jump height and peak power was lower in all loaded conditions compared to UL for all subjects.
- The Model Statistic revealed that 4 and 9 subjects increased momentum from UL to SBJ20 and HBJ20, respectively (Table 2).
- 4 subjects did not decrease momentum from UL to SBJ60 and HBJ60 in the individual-level analysis (Table 2).

Conclusion

• Based on the combined results of the group- and individual-level analyses, momentum may be a more useful metric in determining the effectiveness of LJ performance.

Practical Applications

- Momentum can provide strength coaches with a broader loading range when programming LJs for their athletes.
- Researchers should consider incorporating a singlesubject analysis to supplement group-level statistics in their research.

References

- 1. Aragón-Vargas, L. F., & Gross, M. M. (1997a). Kinesiological factors in vertical jump performance: differences among individuals. *Journal* of applied biomechanics, 13(1), 24-44.
- Harry, J., Krzyszkowski, J., Harris, K., Chowning, L., Mackey, E., Bishop, C., & Barker, L. (2022). Momentum-based load prescriptions: applications to jump squat training. Journal of strength and Conditioning Research.
- Bates, B., James, C., & Dufek, J. (2004). Single-subject analysis. Innovative analyses of human movement, 3-28.