
TEST-RETEST RELIABILITY OF PERIPHERAL QUANTITATIVE COMPUTED TOMOGRAPHY TO EXAMINE THIGH MUSCLE CROSS-SECTIONAL AREA IN YOUNG MEN AND WOMEN

¹ The University of North Carolina at Chapel Hill, Chapel Hill, NC; ²Gatorade Sports Science Institute, Valhalla, NY; ³The University of North Carolina Rex Cancer Center, Raleigh, NC; ⁴West Virginia University, Morgantown, WV

INTRODUCTION

- Assessments of skeletal muscle size are commonly used to examine the impact of training, disease, and rehabilitation on muscle function (1,2).
- Peripheral quantitative computed tomography (pQCT) is a novel, low-radiation alternative to computed tomography to assess muscle cross-sectional area (CSA) (3).

PURPOSE

• The purpose of this study was to examine the test-retest reliability of pQCT-derived midthigh measures of muscle CSA and lean muscle CSA.

METHODS

- Twenty healthy participants (10 females; mean ± SD age= 21.3 ± 1.5 yrs, BMI= 24.1 ± 2.6 kg/m²) enrolled in the study and reported to the laboratory on two separate occasions (separated by 2 - 7 days; ± 2 hrs).
- Participants were required to refrain from any vigorous lower body exercise for 48-hours prior to testing and to abstain from alcohol or recreational drug use for 24 hours prior to testing.
- · All females took a pregnancy test prior to testing and were examined in the early follicular phase of their menstrual cycle.
- Mid-thigh images were acquired at the midpoint between the greater trochanter and lateral epicondyle while lying supine on an examination table (Figure 1. A.).

· Automated enclosing convex polygon approach segmented tissues allowing for muscle CSA and lean muscle CSA quantification (Figure 1. C) (4).

STATISTICAL ANALYSIS

- · A one-way repeated measures analysis of variance was used to assess systematic error between days, along with intraclass correlation coefficients (ICC₂) and standard error of the measurement (SEM) to calculate absolute and relative consistency, respectively (5).
- Minimum difference (MD) values (i.e., amount of change needed to be considered real) were also calculated (5).

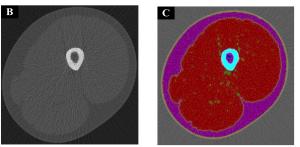


Figure 1. An example of A) participant set up in the scanner; B) mid-thigh scan from STRATEC software; C) mid-thigh muscle CSA scan using convex polygon approach in ImageJ.

RESULTS

• There was no systematic error across days (P=0.41) (14,744 $mm^2 \pm 4.145 mm^2$) vs. (14.813.6 mm² $\pm 4.183.1 mm^2$) for muscle CSA or lean muscle CSA (P=0.60) (14,281.5 mm² ± 4,026.1 mm²) vs. (14,427.8 mm² ± 4,053.4 mm²).

Table 1. Test-retest reliability statistics for peripheral quantitative computed tomography			
derived midthigh measures of muscle and lean muscle CSA.			
	Musala CSA (mm ²)	Loon Musele (CSA (mm ²)	

	Muscle CSA (mm ²)	Lean Muscle CSA (mm ²)
ICC _{2,1}	0.996	0.993
SEM (mm ²)	260.6	352.1
SEM (%)	1.8	2.5
MD (mm ²)	722.5	976.1

CONCLUSION

- · This study indicates that pQCT has acceptable consistency values when examining midthigh muscle and lean muscle CSA in young men and women, as seen in previous studies (6).
- Data suggest that changes of 722.5 mm² for muscle CSA and 976.1 mm² for lean muscle CSA are needed for real change.

PRACTICAL APPLICATIONS

- Researchers and strength and conditioning practitioners could use pQCT to examine changes in thigh muscle and lean muscle CSA following interventions, injury, and/or disease.
- The MD values could give practitioners criteria to determine the effectiveness of a training protocol on muscle CSA.

REEERENCES

- Lynch NA, Metter EJ, Lindle RS, et al. Muscle quality. I. Age-associated diffe (1985). 1999;86(1):188-194.doi:10.1152/jappl.1999.86.1.188
- (1932). 1999;80(1):188-194.001:01.112.20pp;1999.001.188
 (2) Phillips KN, Rook KM, Siddle NC, Bruce SA, Woledge RC. Mucle wakness in women occurs at an earlier ag preserved by hormone replacement therapy. *Clin Sci (Lond)*, 1993;84(1):95-98. doi:10.1042/cs0840095
 (3) Wong AKO, Battie KA, Min KKH, et al. A trimoidally comparison of volumetric bounds in agging technologies, validity. *J Clin Densition*, 2015;18(1):124-135. doi:10.1016/j.jocd.2014.07.005
- Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231-240. doi:10.1519/15184.1
- Herda, AA, Herda, TJ, Costa, PB, Ryan, ED, Stout, JR, and Cramer, JT. Muscle Performance, Size, and Safety Responses after Eight Weeks of Resistance Training and Protein Supplementation: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial.