

VO2MAX PREDICTS CHANGES IN BODY MASS DURING 75 MINUTES OF MODERATE INTENSITY CYCLING IN THE HEAT Blaine S. Lints¹, Harry P. Cintineo², Nathaniel D. Rhoades¹, Alexa J. Chandler¹, Gianna F. Mastrofini¹ South Carolina

ABSTRACT

Individuals with greater aerobic fitness may experience enhanced thermoregulation through a variety of mechanisms such as increased plasma volume, earlier sweating onset, and higher sweat rates. Further, inverse relationships between maximal oxygen consumption (VO₂max) and economy (energetic cost of movement) have been observed. These factors, in combination with external heat stress, may contribute to differing changes in physiological stress and hydration status between individuals of varying fitness during prolonged exercise.

PURPOSE: The purpose of this study was to determine the relationship between VO₂max and changes in body mass over 75 minutes of cycling in a hot environment at a power output that elicited 65% VO_2 max when wattage (W) is partialled out.

METHODS: Sixteen healthy adults (n = 8 women, n = 8 men; M_{VO2max} = 43.5 ± 4.9 ml/kg/min) who were able to achieve a VO₂max of at least 60% of their age and gender matched normative values completed the study. On three separate days, body mass (BM) and core body temperature (CBT) were recorded before and after a 75 minute cycling bout in a heat chamber (30-32°C and 45-50% relative humidity) at a power output corresponding to 65% of their VO₂max. Participants ingested fluid at a fixed rate of 1.5 ml/kg BM every 15 minutes. A Pearson correlation was used to determine the relationship between VO₂max and W. Partial Pearson correlations were used to assess relationships adjusted for W between VO₂max and average percent changes in BM (M_{DBM}) across the three trials, as well as between VO₂max and average percent changes in core body temperature (M_{DCB}) and between M_{DCB} and M_{DBM} . An alpha level of 0.05 was used to determine statistical significance.

RESULTS: A strong, significant relationship was found between VO₂max and W (r = 0.821, p < 1000.001). A strong, significant inverse partial correlation between VO₂max and M_{DBM} when adjusting for W (r = -0.721, p = 0.002) was observed. On average, M_{DCB} was 3.16 \pm 2.20%, but no significant partial correlation was found between VO₂max and M_{DCB} (r = 0.175, p = 0.533). On average, M_{DBM} was -0.94% \pm 0.33%, but no significant partial correlation was found between M_{DCB} and M_{DBM} (*r* = -0.004, *p* = 0.987).

CONCLUSIONS: The strong inverse partial correlation between VO₂max and M_{DBM} indicates that fitter individuals, as estimated by their VO₂max, may be more likely to experience greater losses in BM during moderate-intensity exercise in the heat when W is adjusted for. While thermoregulatory mechanisms may play a role in these changes, we found no significant relationship between VO₂max and M_{DCB} in this study, demonstrating that a higher VO₂max did not equate to improved thermoregulation. Furthermore, the absence of a significant relationship between M_{DCB} and M_{DBM} would imply that changes in CBT were not responsible for differences in body mass changes. Subsequently, it should be considered that exercise at a workload that elicits a given percent of VO₂max may lead to a greater rise in VO₂ and relative stress in those with worse efficiency, which was not assessed in this study. These physiological changes may result in greater body water losses without improved thermoregulation when fluid ingestion rates are matched.

PRACTICAL APPLICATIONS: Perhaps exercise intensity prescriptions based on a snapshot of an individual's economy (e.g., fixed mechanical workloads derived from an unstable physiological intensity) may result in a high degree of variability in relative stress during prolonged exercise, particularly when coupled with heat stress. Future research should further investigate methods of prescribing relative workloads based on capacity measurements (e.g., time to exhaustion at VO₂max power) rather than power measurements (e.g., VO₂max) during prolonged aerobic exercise and should explore the effects of these methods on changes in economy and thermal power.

INTRODUCTION

- Those with greater aerobic fitness may experience enhanced thermoregulation through a variety of mechanisms
- In fit populations, inverse relationships between VO₂max and the energetic cost of movement have been observed
- These factors, coupled with external heat stress, may contribute to variable changes in physiological stress and hydration status during prolonged exercise
- The purpose of this study was to determine the relationship between VO₂max and changes in CBT over 75 minutes of cycling in the heat at 65% of VO₂max when the influence of wattage is partialled out

Pa

Emma E. Worley¹, Bridget A. McFadden^{1,3}, Jacob Becker¹, Shawn M. Arent¹ ¹University of South Carolina, Columbia, SC, 29201; ²Lindenwood University, St Charles, MO 63301; ³Queens College, Queens, NY 11367

- Fitter individuals may be more likely to experience greater losses in BM during moderate-intensity exercise in the heat
 - This relationship remains when the influence of mechanical work is partialled out, based on these data
- Mechanical workloads derived from unstable physiological intensities may result in variable relative stress during prolonged exercise in the heat
- Future research should:
 - Investigate methods of prescribing relative workloads based on capacity measurements rather than power measurements (e.g., TTE at VO₂max power rather than $VO_{2}max$)
 - Explore the effects of these methods on changes in economy and thermal power during exercise

ME	THOD
Participants	Sta
 Sixteen healthy adults 	•
• n = 8 men	t
 n = 8 women 	t
 VO₂max of at least 60% of age and gender matched 	• /
normative values (mean VO ₂ max \pm SD of 43.5 \pm 4.9	r
ml/kg/min)	• F
Exercise-Heat Stress	r
 75 minutes at a power output that elicited 65% 	•
of VO ₂ max	•
• Fluids were ingested at a fixed rate of 1.5 ml/kg	• /
BM every 15 minutes	S
 30-32°C and 45-50% relative humidity 	
 Three separate trials were performed 	

atistical Analysis

Individual percent changes in core body temperature (DCB) and body mass (DBM) across the three trials were averaged A Pearson correlation was used to assess the relationship between VO₂max and W Partial Pearson correlations were used to assess relationships between: VO₂max and average DBM VO₂max and average DCB Average DCB and DBM

An alpha level of 0.05 was used to determine statistical significance

Table Varia **VO2** DBN W DCB 200 -

> 150 125

≥

100

• There was a strong, significant correlation between VO₂max and W (r = 0.821, p < 10.001, Figure 1)

0.004

0.002

0.000

-0.002

This abstract was made possible in part by Grant Number T32-GM081740 from NIH-NIGMS. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH

RESULTS

e 1. Descriptive statistics by variable								
Simple Statistics								
able	Ν	Mean	Std Dev	Median	Minimum	Maximum		
	16	43.48125	4.94452	44.50000	35.30000	52.50000		
I	16	0.99065	0.00332	0.98999	0.98561	0.99663		
	16	140.31250	39.64294	137.50000	75.00000	200.00000		
	16	1.03165	0.02199	1.02666	1.01309	1.10894		

• M_{DCB} was 3.16 ± 2.20% (Table 1) • M_{DBM} was -0.94% \pm 0.33% (Table 1)

Figure 1. Scatter Plot for VO₂ and W

Figure 2. Partialled (W) Residual Scatter Plot for VO₂ and DBM

• There was a strong, significant inverse partial correlation between VO₂max and M_{DBM} (*r* = -0.721, *p* = 0.002, Figure 2)