Unilateral and Bilateral Force Production and Neuromuscular Excitation During Maximal Voluntary Isometric Contractions and Isokinetic Leg Extensions

Balea J. Schumacher¹, John Paul V. Anders^{1,2}, Brady R. Fishpaw¹, Robert W. Smith², Tyler J. Neltner², Jocelyn E. Arnett², Terry J. Housh², Richard J. Schmidt², Glen O. Johnson² THE OHIO STATE UNIVERSITY ¹The Ohio State University, Columbus, Ohio COLLEGE OF

EDUCATION AND HUMAN ECOLOGY

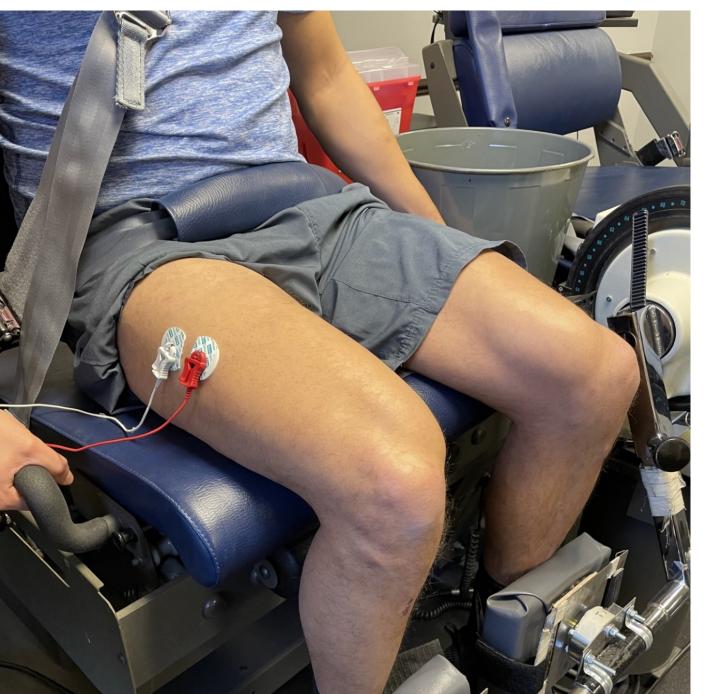
INTRODUCTION

- The bilateral deficit (BD) is defined by the force produced during a maximal bilateral (BL) contraction being less than the sum of the force produced by maximal unilateral (UL) contractions of the same muscles (1).
- It is unclear whether there are differences in the BD during maximal voluntary isometric contractions (IM) vs. maximal isokinetic (IK) leg extension muscle actions.

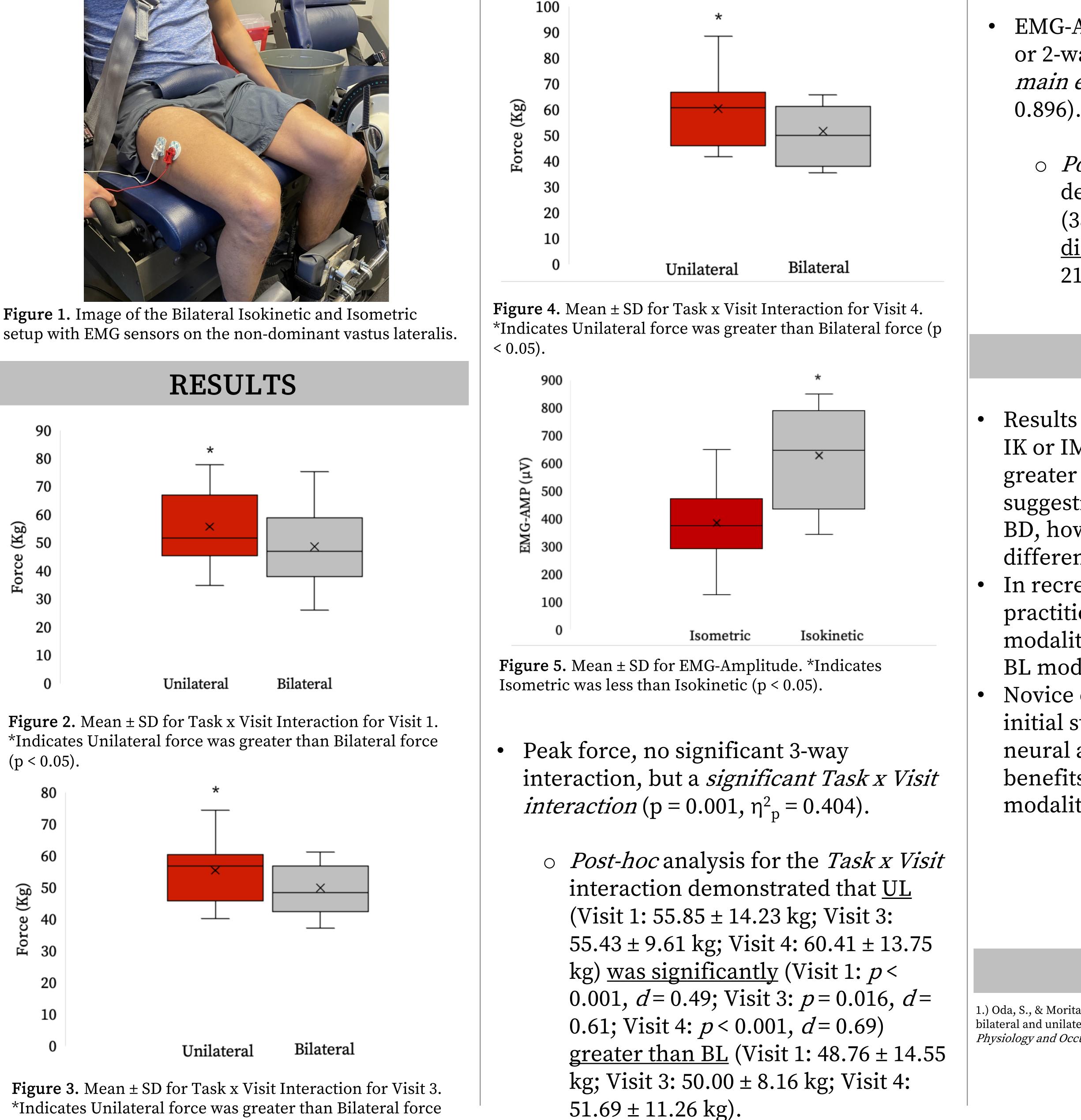
PURPOSE

<u>The purpose of the present study</u> was to examine differences in UL and BL force and muscle excitation during IM vs. IK muscle actions.

METHODS


Table 1. Study Criteria and Participant
 Characteristics

Participant Characteristics	 N=11 Age = 20.8 ± 1.7 yrs. Height = 179.3 ± 7.2 cm. Body Mass = 84.0 ± 16.2 kg.
Study Measures	 Vastus lateralis Peak Force (Kg) EMG Amplitude (EMG-AMP, μV)
Statistical Analysis	 Repeated measures ANOVA Criterion set at alpha level of 0.05 Effect sizes partial eta-squared (η²_p) and Cohen's <i>d</i>


PROCEDURE

Performed separate maximal, UL and BL, IM (6-second hold) and IK leg extensions at 180°s⁻¹ in random order on four separate days

²University of Nebraska – Lincoln, Lincoln, Nebraska

Figure 1. Image of the Bilateral Isokinetic and Isometric

*Indicates Unilateral force was greater than Bilateral force (p < 0.05).

EMG-AMP, there were no significant 3or 2-way interactions, but *significant* main effect for Modality (p = 0.001, $\eta^2_p =$

• *Post-hoc* analysis for *Modality* demonstrated that the <u>IM EMG-AMP</u> $(385.2 \pm 167.6 \mu V)$ was statistically different than IK EMG-AMP (628.7 ± 211.7 μ V) (p < 0.00, d = 1.46).

CONCLUSION

Results demonstrated that regardless of IK or IM modalities, the UL tasks elicited greater force than the BL tasks, thus suggesting a BD for both modalities. The BD, however, was not associated with differences in muscle excitation. • In recreationally trained individuals, practitioners should consider that UL modalities may elicit greater force than BL modalities.

• Novice or untrained individuals, whose initial strength gains are attributed to neural adaptations, may receive similar benefits from UL and BL training modalities.

REFERENCES

1.) Oda, S., & Moritani, T. (1994). Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans. *European Journal of Applied Physiology and Occupational Physiology, 69*(3), 240-243. doi:10.1007/BF01094795