# **DETERMINATION OF LOW ENERGY AVAILABILITY BY DUAL X-RAY ABSORPTIOMETRY VERSUS AIR DISPLACEMENT PLETHYSMOGRAPHY IN COLLEGIATE ATHLETES**

Devon Trieschock, Meghan K. Magee, Andrew R. Jagim, Jennifer B. Fields, Margaret T. Jones, FNSCA





**PRESENTER**:

#### **Devon Trieschock**

### BACKGROUND

- Low energy availability (LEA) can lead to decrements in athlete health and sport performance.
- Determination of fat free mass (FFM) is necessary to calculate energy availability (EA).
- instruments may provide varied Different measurements of FFM, leading to differences in calculated EA values.
- Limited data exists on how instrumentation selection to determine FFM may influence EA status in collegiate team sport athletes.

### **PURPOSE**

To examine differences in EA values based upon selection of body composition instrumentation selection.

### METHODS

- National Collegiate Athletic Association Division I men (n=10) basketball athletes participated in study.
- FFM was measured using air displacement plethysmography (ADP) dual and x-ray absorptiometry (DXA).
- DXA and ADP testing occurred no more than 48 hours apart for all athletes.
- Athletes refrained from exercise, eating, and drinking for at least 2 hours prior to ADP testing.
- I Jewelry was removed, and Lycra swim caps and spandex were worn during ADP testing.
- For ADP testing, thoracic gas volume was estimated using manufacturer guidelines, and the Brozek equation was used.
- Athletes wore clothing with no metal and removed all jewelry prior to DXA testing.

|               | KEY   | <u>F</u> IN. |
|---------------|-------|--------------|
| Determination | ofLEA | statu        |
|               |       |              |

 Table 1. Athlete Characteristics

Assessment

Height (cm)

Weight (kg)

Average Energy Intake (kca

Average Energy Expenditure

FFM kg (DXA)

FFM kg (ADP)

DXA Energy Availability (kcal/F

ADP Energy Availability (kcal/F

Values are represented as mean  $\pm$  standard deviation \*Denotes significant difference when compared to DXA (p<0.001) FFM: Fat Free Mass; DXA: Dual X-Ray Absorptiometry; ADP: Air Displacement Plethysmography

## DINGS

## is may change depending upon the selected measurement instrument.

|         | Team Average       |
|---------|--------------------|
|         | $196.1 \pm 9.6$    |
|         | 91.7 ± 12.5        |
| cal)    | 3340.2 ± 489.7     |
| (kcal)  | $1268.6 \pm 228.1$ |
|         | 77.2 ± 9.9         |
|         | 82.5 ± 10.6*       |
| FFM kg) | $27.0 \pm 6.5$     |
| FFM kg) | 25.1 ± 5.6*        |

### **METHODS (CONT'D)**

- Dietary analysis software was used to determine energy intake from photos of all food and beverages consumed over 4 consecutive days.
- Heart rate monitors worn during practices were used to determine exercise energy expenditure over the same 4 consecutive day period by using a proprietary algorithm from the software program.
- Energy Status was determined by: • (Energy Intake (kcal) – Exercise Energy Expenditure (kcal)) Fat Free Mass (kg)
- Threshold of <30 kcal/kg used to determine LEA.</p>
- Paired sample t-tests determined differences between instrumentation in determining EA values.
- Significance was set to  $p \le 0.05$ .

### RESULTS

- FFM measurements differed between DXA and ADP (p<0.001) with ADP overestimating FFM (table 1).
- There was a significant difference in EA values when determined by DXA and ADP (p<0.001), where ADP yielded lower EA.
- DXA estimated 7 athletes with LEA.
- ADP estimated 9 athletes with LEA.

### CONCLUSIONS

Determination of LEA status may change depending upon selected measurement instrument.

### PRACTICAL **APPLICATIONS**

It is recommended to choose valid and reliable instrumentation to ensure accurate energy status, remain consistent with selected instrumentation, and use caution when comparing values across different

instruments.





