RESULTS OF 7-MONTH NEUROMUSCULAR TRAINING PROGRAMME DESIGNED TO IMPROVE LEG STIFFNESS IN HIGH-LEVEL YOUNG FEMALE GYMNASTS Sylvía Moeskops¹, Jon L. Olíver^{1,2}, J Gregory D. Myer^{1,4}, G. Gregory Haff^{5,6} and Rhodrí S. Lloyd^{1,2,3}

Youth Physical Development Centre, Cardiff Metropolitan University, ³ Centre for Sport Science and Human Performance, Waikato Institute of Technology, ⁴ Emory Sports Performance and Research Center, Department of Orthopaedics, Emory University School of Medicine, ⁵ School of Medical and Health Science, Centre for Human Performance, Australia. ⁶Directorate of Psychology and Sport, University of Salford

only (GYM)

CON (33%) groups.

Data Analysis

Chi-Sqaured analysis was used to evaluate the number of positive responders using 0.2. (small), 0.6 (moderate) & 1.2 (large) of the betweensubject SD.

Conclusion

Positive changes in StiffnessRel can be achieved in young female gymnasts following supplementary NMT; adaptations that exceed those changes obtained solely from gymnastics training or maturation.

However, a longer training duration of additive gNMT might be needed to elicit changes in Speedpeak and vault take-off velocity.

Group Analysis

A 3 x 3 (group x time) repeated measures ANCOVA (%PAH as a covariate) and Hedges' g were used to calculate the significance and magnitude of within-group differences.

