

VALIDITY OF A SMART GARMENT TO COLLECT MEASURES OF HEART RATE VARIABILITY DURING REST AND POST-EXERCISE RECOVERY David J. Cornell,^{1,2} Thomas J. Sherriff,^{1,2} Quentin J. Proulx,^{1,2} Donald W. Rogers,^{1,2} Megan T. Duong,^{1,2} Julia J. Hill,^{1,2} Andreas T. Himariotis^{1,2} ¹Health Assessment Laboratory, ²Department of Physical Therapy & Kinesiology, University of Massachusetts Lowell, Lowell, MA

INTRODUCTION

- Wearable technology allows the collection of various physiological measures including heart rate variability $(HRV)^{1,2}$
- Wearable technology, such as watches, and straps have been validated,³⁻⁶ but may not be comfortable or feasible to wear over long periods of time, indicating a need to develop a new wearable technology that overcomes these limitations
- A new smart garment prototype embedded with laminate electrocardiography (ECG) electrodes has recently been developed, which may provide a more feasible method of HRV assessment (Figure 1)
- However, the concurrent validity of this novel garment to an industry standard heart rate monitor (HRM) is unknown

PURPOSE

• Thus, the *purpose* of this study was to determine the concurrent validity of a smart garment when collecting HRV data during rest and post-exercise recovery conditions

ACKNOWLEDGMENTS

We would like to acknowledge funding support the Massachusetts Manufacturing trom Innovation Initiative of the Commonwealth of Massachusetts. We would also like to thank Human Systems Integration, Inc. for their collaboration and providing smart garments for this study, as well as the U.S. Army Research Institute for Environmental Medicine for their technical support.

Participants

Protocols

- their xiphoid process

Data Processing

- and Recovery conditions
 - R-R interval (ms)

Statistical Analyses

- interpreted as:¹⁰

METHODS

• 16 males participated in this study (age: 24.6 ± 4.3 yrs; height: 180.7 ± 6.7 cm; body mass: 88.0 ± 10.0 kg)

• A HRM was first placed to avoid any interference with the laminate ECG electrodes (Figure 2) and then participants were fitted with the appropriately sized smart garment based on the chest circumference at

Participants then completed a treadmill exercise protocol (Figure 3) with HRV data collected before and after during the following conditions:

• Resting – Supine (5 minutes)

• Resting – Seated (5 minutes)

• Recovery – Seated (5 minutes)

• Recovery – Supine (5 minutes)

• R-R interval data (ms) were collected via a Polar H10 HRM paired with a Polar V800 watch (Polar Electro, Kempele, Finland) at a rate of 1,000 Hz⁶ and the novel smart garment (TacMON, Human Systems Integration, Inc., Walpole, MA) at a rate of 250 Hz during Resting

Raw R-R interval data were extracted from the HRM and smart garment and data from both the garment and HRM were processed using Kubios HRV 3.5 software

(Kubios, Ltd., Kuopio, Finland) using an automatic correction filter⁷ to calculate measures of HRV:

• natural log of the root mean square of successive R-R interval differences (lnRMSSD) (ms)

Paired t-tests examined absolute agreement in HRV measures collected between devices

• Hedges' g effect sizes determined the magnitude difference⁸ and were interpreted as:⁹

• very large: $g \ge 2.0$; large: $2.0 > g \ge 1.2$; moderate: $1.2 > g \ge 0.6$; small: $0.6 > g \ge 0.2$; trivial: g < 0.2

• Bivariate Pearson correlations (r) and coefficient of determinations (R^2) were utilized to determine the level of association and variance shared in HRV measures collected between devices⁸ and were

• *nearly perfect:* $r \ge 0.9$; *very strong:* $0.9 > r \ge 0.70$; *strong*: $0.70 > r \ge 0.50$; *moderate*: $0.50 > r \ge 0.30$; *small*: $0.30 > r \ge 0.10$; and trivial: r < 0.10

• An alpha of 0.05 determined statistical significance

• However, a *moderate* and significant difference was observed in lnRMSSD data during Recovery – Seated position (p = 0.011) (Table)

<u> </u>	U	•		/	
TABLE. Comparisons Between Smart Garment and HRM (mean ± SD).*					
Condition	Smart Garment	HRM	Mean Difference	Effect Size	Data Loss
R-R Interval Data (ms)					
Resting – Supine	$055.27 \pm 1.46.70$	056.00 ± 146.96	1 62 + 2 10	g = 0.01	12.5%
(n = 14)	933.37 ± 140.70	930.99 <u>+</u> 140.80	-1.03 ± 5.19	trivial	(2/16)
Resting – Seated	833.43 <u>+</u> 130.01	871.30 <u>+</u> 100.18	-37.87 ± 98.98	g = 0.33	6.25%
(<i>n</i> = 15)				small	(1/16)
Recovery – Seated	591.57 <u>+</u> 68.64	599.76 <u>+</u> 75.55	-8.19 ± 32.68	g = 0.11	6.25%
(<i>n</i> = 15)				trivial	(1/16)
Recovery – Supine	69770 + 9117	609.20 ± 95.12	15 51 + 59 70	g = 0.18	12.5%
(n = 14)	002.70 ± 04.12	098.20 ± 03.13	-13.31 ± 36.70	trivial	(2/16)
InRMSSD Data (ms)					
Resting – Supine	4.14 <u>+</u> 0.65	4.13 <u>+</u> 0.61	$+0.004 \pm 0.12$	g = 0.02	12.5%
(n = 14)				trivial	(2/16)
Resting – Seated	4.24 ± 0.81	3.96 <u>+</u> 0.45	$+0.28 \pm 0.64$	g = 0.43	6.25%
(<i>n</i> = 15)				small	(1/16)
Recovery – Seated	3.25 <u>+</u> 1.32	2.41 <u>+</u> 0.73	$+0.85 \pm 1.12^{\dagger}$	g = 0.79	6.25%
(<i>n</i> = 15)				moderate	(1/16)
Recovery – Supine	2.81 <u>+</u> 1.16	2.51 <u>+</u> 0.83	$+0.31 \pm 0.82$	g = 0.30	12.5%
(n = 14)				small	(2/16)
*HRM, heart rate monitor; $InRMSSD = natural log of the root mean square of successive R-R interval differences.*Significant difference between smart garment and HRM devices via paired t-tests (n < 0.05)$					

in the seated position

- Singh N, Moneghetti KJ, Christle JW, et al. Arrhythm Electrophysiol Rev. 2018;7(4):247-255. Tarvainen MP, Niskanen JP, Lipponen JA, et al. Comput Methods Programs Biomed. Singh N, Moneghetti KJ, Christle JW, et al. Arrhythm Electrophysiol Rev. 2018;7(3):193-198. 2014;113(1):210-220. 8. Lakens D. Front Psychol. 2013;4:863 9. Hopkins WG, Marshall SW, Batterham AM, et al. Med Sci Sports Exerc. 2009;41(1):3-13. 10. Schober P, Boer C, Schwarte LA. Anesth Analg. 2018;126(5):1763-1768.
- 3. Nazari G, Bobos P, MacDermid JC, et al. BMC Sports Sci Med Rehabil. 2015;10:6. 4. Villar R, Beltrame T, Hughson RL. Appl Physiol Nutr Metab. 2015;40(10):1019-1024. 5. Akintola AA, van de Pol V, Bimmel D, et al. Front Physiol. 2016;7:391.
- 6. Caminal P, Sola F, Gomis P, et al. Eur J Appl Physiol. 2015;118(3):669-677.

RESULTS

• *Trivial* to *small* and non-significant (p > 0.05) differences in R-R interval and lnRMSSD data were observed between the smart garment and the HRM during the Resting – Supine, Resting – Seated, and Recovery – Supine conditions (Table)

In addition, very strong to nearly-perfect and statistically significant (p < 0.05) correlations were identified between the smart garment and HRM in R-R interval data during the Resting – Supine (r = 0.999, $R^2 = 0.998$), Recovery – Seated (r = 0.902, $R^2 = 0.814$), and Recovery – Supine (r = 0.759, $R^2 = 0.576$) conditions, along with very strong to nearly*perfect* correlations in lnRMSSD data during the Resting – Supine (r = 0.985, $R^2 = 0.970$) and Recovery – Supine (r = 0.704, $R^2 = 0.496$) conditions

• However, only strong correlations in R-R interval data and lnRMSSD data were identified between the smart garment and HRM during the Resting – Seated (r = 0.658, $R^2 = 0.433$; r = 0.608, $R^2 = 0.370$, respectively) condition

Further, only a *strong* correlation in lnRMSSD data was identified between the smart garment and HRM during the Recovery – Seated (r = 0.529, $R^2 = 0.280$) condition

CONCLUSIONS

• The smart garment prototype demonstrated concurrent validity with collecting R-R interval data during rest and post-exercise recovery, but the degree of validity decreased after exercise

PRACTICAL APPLICATIONS

This novel smart garment prototype may prove to be an effective method for strength and conditioning professionals to assess HRV measures for longer periods of time and in a variety of field-based environments

REFERENCES

UMASS LOWELL