FACULDADE DE MOTRICIDADE HUMANA

Purpose

Since the load-velocity relationship displays strong linearity (R^2 usually > 0.9) in response to several multiarticular resisgued that one-repetition maximum (1RM) can be predicted using this method^{1,2,3}. However, most past studies (excluding two which examined the bench press) examining the predictive value of the load -velocity relationship in determining 1RM implemented its direct determination to enable testing movement velocity within a predetermined set of relative loads (e.g., 50, 60, 70, 80, 90% 1RM)^{4,5}. Whether the two-point approach enables accurate predictions of the back-squat 1RM without requiring its previous determination remains uknown.

The purpose of this study was to determiblishing the load-velocity profile affect the accuracy of estimating 1RM.

Methods

We studied 26 young healthy male, physical education students, on no medications. All participants were well accostumed to resistance tance training exercises, it has been ar- training, including the back-squat exercise.

Predictions based on a practical two-point approach (no pre-determination of 1RM) were compared to those obtained with the conventional multipoint and two-point approaches (with predetermination of the 1RM). After profiling the load-velocity relationship with each approach, 1RM was estimated relying on the general minimum-velocity threshold (MVT: 0.3 m.s^{-1}). Analyses were conducted separately for the Smith-machine concentric back squat and the free-weight eccentric-concentric back squat $(n=13 \text{ Smith Machine } [23.3 \pm 3.8 \text{ years}], n=13$ free-weight [22.9 \pm 3.2 years]). Differences in the load-velocity profiles obtained with each approach were assessed using slopes and yne whether different approaches of esta- intercepts. The accuracy of 1RM prediction was determined by contrasting the actual with predicted 1RM and via Bland-Altman plots.

PREDICTION OF ONE-REPETITION MAXIMUM BASED ON THE LOAD-VELOCITY RELATIONSHIP: MULTIPOINT AND TWO-POINT APPROACHES Afonso Fitas, Paulo Santos, Miguel Gomes, Pedro Pezarat-Correia, Goncalo V. Mendonca

Individual MVT did not differ from the general 0.3 m.s⁻¹ value (0.27 ± 0.11 and 0.31 ± 0.08 m.s⁻¹, for the Smith machine and the For the Smith-machine concentric back squat, the combinafree-weight back squat, respectively. The slopes and y-interceps were similar between approaches. tion of all profiling approaches with the use of a general MVT value enables accurate 1RM group estimations. For free-weight back squat, group estimations should be based Table 1. Differences in the load-velocity profiles (slope and y intercept) obtained with three different approaches (conventional multipoint, conventional two-point and practical on the multipoint approach. Yet the wide limits of agreetwo-point) in response to the back squat exercise (Smith machine concentric squat and free-weight eccentric-concentric squat). ment preclude the use of these approaches for estimating 1RM accurately on na individual basis.

	Smith-machine concentric squat		Free-weight eccentric-concentric squat			
	Conventional MP	Conventional 2P	Practical 2P	Conventional MP	Conventional 2P	Practic
	(n=13)	(n=13)	(n=13)	(n=13)	(n=13)	(n=1
y intercept (kg)	133.3 ± 32.4	134.6 ± 31.9	137.4 ± 29.8	137.7 ± 15.4	141.2 ± 17.3	141.2 =
Slope (kg/m.s ⁻¹)	-100.3 ± 24.5	-103.6 ± 28.1	-107.0 ± 26.2	-98.1 ± 19.1	-101.7 ± 21.5	-101.7 :

Note: values are mean \pm standard deviation.

Abbreviations: MP, multipoint, 2P, two point.

cantly different from the actual 1RM (102.3 \pm 10.5 kg; p<0.05, except with multipoint).

Results

For the Smith-machine, the 1RM estimated with MVT did not differ from actual 1RM (103.5 \pm 23.4 kg) with either approach (conventional multipoint: 103.2 ± 26.6 kg; conventional two-point: 103.4 ± 25.8 kg; practical two-point: 105.3 ± 24.7 kg; mean misestimate: -1.83 to 0.02 kg). However, the limits of agreement were high (\sim 12 kg) and the absolute percent error was larger than zero with all approaches. Estimations of 1RM for the free-weight back squat were poor (conventional multipoint: 108.2 ± 11.1 kg; conventional two-point: 110.6 ± 11.9 kg; practical two-point: 110.7 ± 11.6 kg; mean overestimation of ~ 6 to 8 kg) and signifi-

Conclusions

ical 2P

13)

_ ± 16.5

 ± 20.1

represent

Practical Applications

Coaches and athletes can extract the load-velocity relationship without directly determining the 1RM. However, for accurate 1RM individual assessments, coaches and athletes should not rely on estimations based on the load-velocity relationship.

References

- 1. Balsalobre-Fernández C, García-Ramos A, Jiménez-Reyes P. Load-velocity profiling in the military press exercise: Effects of gender and training. Int J Sports Sci Coach. 2018;13(5):743-750. doi:10.1177/1747954117738243
- 2.Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity relationship for 1rm prediction. Journal of Strength & Conditioning Research. 2011; 25(1): 267-70.
- 3.Sánchez-Medina L, Pallarés J, Pérez C, Morán-Navarro R, González-Badillo J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med Int Open. 2017;01 (02):E80-E88. doi:10.1055/s-0043-102933
- 4. García-Ramos A, Haff GG, Pestaña-Melero FL, et al. Feasibility of the 2-Point Method for Determining the 1-Repetition Maximum in the Bench Press Exercise. Int J Sports Physiol Perform. 2018;13(4):474-481. doi:10.1123/IJSPP.2017-0374
- 5.García-Ramos A. Optimal Minimum Velocity Threshold to Estimate the 1-Repetition Maximum: The Case of the Smith Machimean difference and 95% ne Bench Press Exercise. Int J Sports Physiol Perform. 2023;18 (4):1-9. doi:10.1123/IJSPP.2022-0355