# Obesity, Adenoid Regrowth, and Pediatric Obstructive Sleep Apnea: Treatment Implications

Emma H. Neal, PhD¹, Diane Lee, BS¹, Mary Stuckey, MD², Brittany Lipscomb², Heidi Chen, PhD², Shilin Zhao, PhD², and Amy S. Whigham, MD, MS-HPEd³

<sup>1</sup>Vanderbilt University School of Medicine <sup>2</sup>Surgical Outcomes Center for Kids (SOCKs) <sup>3</sup>Vanderbilt University Medical Center Department of Otolaryngology



## BACKGROUND

- The prevalence of pediatric obesity and pediatric obstructive sleep apnea (OSA) have risen in tandem.<sup>1</sup>
- Previous studies have shown inflammatory markers to be elevated in pediatric patients with obesity and OSA.<sup>2</sup>
- Adenotonsillar hypertrophy is associated with increased inflammatory markers and has been shown to respond to anti-inflammatory agents.<sup>3</sup>
- <u>Purpose</u>: To explore the connection between pediatric obesity and the need for secondary adenoid removal surgeries

### METHODS



Retrospective cohort study of patients undergoing adenoid removal surgeries at a tertiary academic center. This study received IRB approval.



Patients undergoing initial adenoid removal surgeries between 2012-2017 who underwent secondary intervention or were followed for a minimum of 2 years were included for further analysis.



Data were analyzed by Pearson's chi-squared test and Wilcoxon's test with statistical significance set *a priori* at *p*<0.05.

### RESULTS

Table 1. Initial cohort demographics

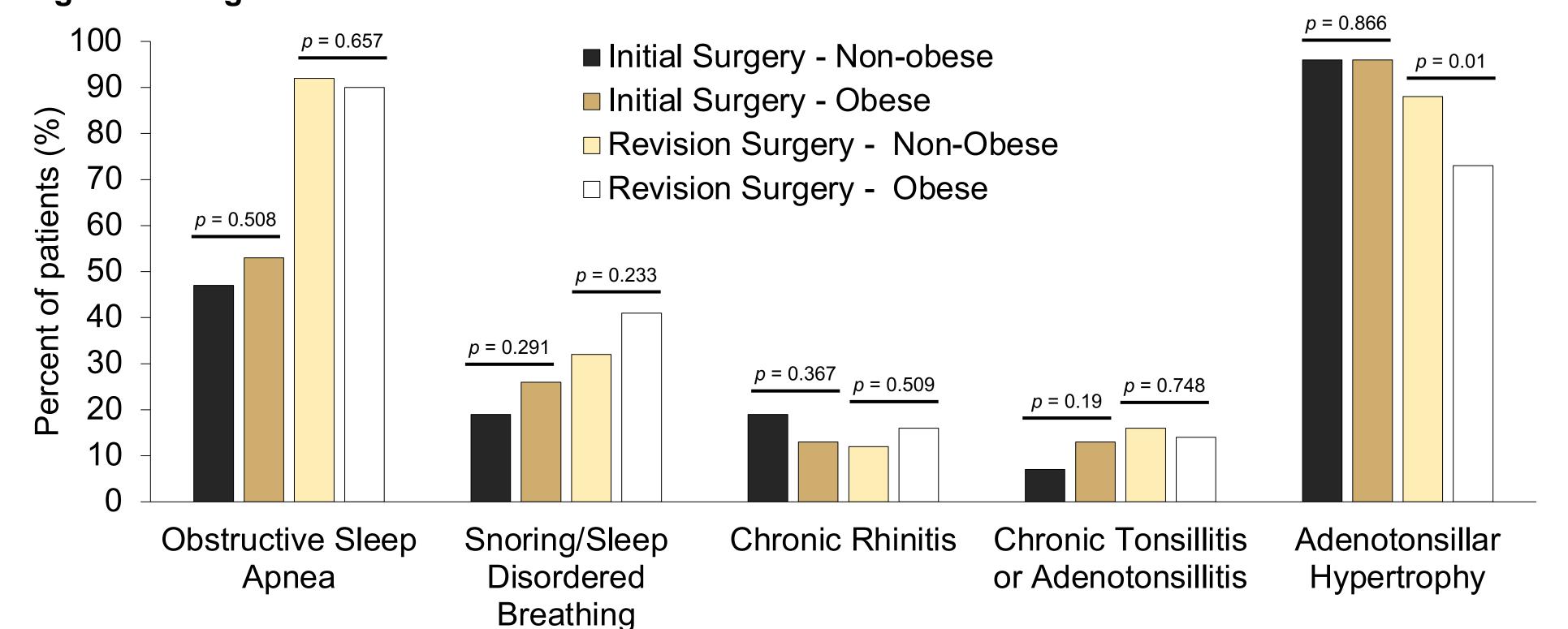

| Demographics and Clinical<br>Characteristics | Total<br>(n= 230)<br>N (%) |
|----------------------------------------------|----------------------------|
| Sex                                          |                            |
| Female                                       | 38                         |
| Male                                         | 62                         |
| Birth History                                |                            |
| Premature                                    | 19                         |
| Full Term                                    | 81                         |
| Comorbid Diagnoses                           |                            |
| Down Syndrome                                | 10                         |
| Cerebral Palsy                               | 0                          |
| Hypotonia                                    | 0                          |
| Craniofacial Diagnosis                       | 17                         |
| Neuromuscular Diagnosis                      | 16                         |
| Laryngo/Tracheomalacia                       | 10                         |
| None                                         | 62                         |
|                                              |                            |

Table 2. Age of patients at initial and revision adenoid removal surgeries

| Age (years)      | Non-Obese   | Obese       | Significance |
|------------------|-------------|-------------|--------------|
| Initial surgery  | 3.17 ± 2.49 | 4.39 ± 3.84 | p = 0.087    |
| Revision surgery | 4.94 ± 2.49 | 7.56 ± 3.82 | p < 0.001    |

Patients with obesity were older at the time of their revision surgery than patients without obesity. Adenotonsillar hypertrophy was more likely to be an indication for patients without obesity undergoing a revision surgery.

Figure 1. Surgical indications.



#### RESULTS

Table 3. Expanded cohort demographics, comorbidities, and primary surgical indications

|                                        |                     | No Revision Surgery                   | Revision Surgery | Test Statistic          |  |
|----------------------------------------|---------------------|---------------------------------------|------------------|-------------------------|--|
|                                        |                     | N = 287                               | N=120            |                         |  |
| Sex (N=408)                            | Male                | 57% (163)                             | 65% (78)         | χ2=2.36, P=0.1251       |  |
| 36X (14-400)                           | Female              | 43% (124)                             | 35% (42)         | χΖ-Ζ.30, 1 -0.1231      |  |
| Age at initial surgery (ye             | ears) (N=40         | <b>7)</b> 4.27 ±2.95                  | 3.12 ±2.27       | F=15.2, P<0.001         |  |
|                                        | Hypotonia           |                                       |                  |                         |  |
|                                        | No                  | 78% (223)                             | 72% (87)         |                         |  |
|                                        | Yes                 | 22% (64)                              | 28% (33)         | $\chi$ 2=1.26, P=0.2621 |  |
|                                        | Asthma / F          | Reactive airway disease               |                  |                         |  |
|                                        | No                  | 91% (260)                             | 86% (103)        | v0-1 00 D-0 1501        |  |
|                                        | Yes                 | 9% (27)                               | 14% (17)         | $\chi$ 2=1.99, P=0.1591 |  |
|                                        | Chronic rh          | initis / rhinorrhea                   |                  |                         |  |
| Comorbidities (N=409)                  | No                  | 61% (176)                             | 69% (83)         | χ2=2.25, P=0.1341       |  |
|                                        | Yes                 | 39% (111)                             | 31% (37)         |                         |  |
|                                        | GERD                |                                       |                  |                         |  |
|                                        | No                  | 90% (259)                             | 92% (110)        | χ2=0.2, P=0.6531        |  |
|                                        | Yes                 | 10% (28)                              | 8% (10)          |                         |  |
|                                        | None                |                                       |                  |                         |  |
|                                        | No                  | 59% (170)                             | 57% (68)         | χ2=0.23, P=0.6321       |  |
|                                        | Yes                 | 41% (117)                             | 43% (52)         |                         |  |
|                                        | Obstructive         | e sleep apnea / Sleep disordere       | ed breathing     |                         |  |
|                                        | No                  | 47% (135)                             | 51% (61)         | χ2=0.49, P=0.4851       |  |
|                                        | Yes                 | 53% (152)                             | 49% (59)         |                         |  |
|                                        | Recurrent infection |                                       |                  |                         |  |
| Indication for initial surgery (N=409) | No                  | 77% (221)                             | 87% (104)        | χ2=4.91, P=0.0271       |  |
|                                        | Yes                 | 23% (66)                              | 13% (16)         |                         |  |
|                                        | Middle ear          | disease                               |                  |                         |  |
|                                        | No                  | 49% (140)                             | 42% (51)         | χ2=1.34, P=0.2471       |  |
|                                        | Yes                 | 51% (147)                             | 57% (69)         |                         |  |
|                                        | Adenoid hy          | pertrophy                             |                  |                         |  |
|                                        | No                  | 25% (73)                              | 22% (26)         | χ2=0.65, P=0.4191       |  |
|                                        | Yes                 | 75% (214)                             | 78% (94)         |                         |  |
|                                        | Other               | · · · · · · · · · · · · · · · · · · · | • •              |                         |  |
|                                        | No                  | 97% (279)                             | 98% (118)        | χ2=0.44, P=0.5051       |  |
|                                        | Yes                 | 3% (8)                                | 2% (2)           |                         |  |

Patients who ultimately underwent a revision surgery were younger at the time of initial surgery. Recurrent infection was more often an indication for initial surgery in patients who did not later undergo a revision surgery. Patient BMI distribution was similar in patients undergoing revision surgery and those who did not undergo a revision surgery.

Figure 2. Patient BMI distribution at time of revision surgery or most recent follow up

60
50
40
30
30
30
30
30
4
1
Underweight Healthy weight

Overweight Obese

## CONCLUSIONS & FUTURE DIRECTIONS

- Patient BMI did not significantly differ between patients undergoing revision adenoidectomy and patients not requiring additional surgery.
- Differences in comorbidities were not associated with need for additional surgeries.
- Future works will benefit from further exploration of patient factors for patients requiring revision surgery.

## ACKNOWLEDGEMENTS & REFERENCES

Thank you to Kalpnaben Patel and the entirety of the SOCKs team for their support of this work.

- 1. Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017 Feb;92(2):251–65.
- 2. Bhatt SP, Guleria R, Kabra SK. Metabolic alterations and systemic inflammation in overweight/obese children with obstructive sleep apnea. PLOS ONE. 2021 Jun 4;16(6):e0252353.
- 3. Sakarya EU, Muluk NB, Sakalar EG, Senturk M, Aricigil M, Bafaqeeh SA, Cingi C. Use of intranasal corticosteroids in adenotonsillar hypertrophy. J Laryngol Otol. 2017 May;131(5):384–90.