Thomas Jefferson University

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE

Modified Frailty Index Associates with TORS Complications and Survival: A National Real-World Database Study

Amiti Jain, BS; Kathleen Gilmore, BS; Dev R. Amin, MD; Nayel Kahn, MD; Zachary D. Urdang, MD PhD; David M. Cognetti, MD; Joseph M. Curry, MD Thomas Jefferson University, Department of Otolaryngology, Philadelphia PA, USA

Introduction

- Retrospective study utilizing the TriNetX multi-centered UScollaborative health records network querying for TORS patients.
- While age has traditionally been used as a proxy for frailty, previous studies have highlighted the need for a more comprehensive measure to accurately predict surgical outcomes.
- The mFI-5's validity to predict transoral robotic surgery (TORS) outcomes has yet to be reported.

Methodology

- Cohorts were stratified by mFI-5 score which uses five ICD-10 codes: non-independent functional status, hypertension, obstructive respiratory disease, heart failure, and diabetes mellitus.
 - Cohorts were matched using propensity score matching (PSM) for age group at index (decade of life 40-89 years).
- Outcome measures included survival, post-operative infection, pneumonia, tracheostomy dependence, and PEG dependence.
- All odds-ratios reported were normalized to mFI-5 = 0.

Results

Figure 1. Frailty odds ratios normalized to mFI-5 = 0 for unmatched and matched data.

- * p≤0.05
- ** p≤0.001
- Unmatched Propensity Score Matched

Conclusions

- Propensity-score matched data demonstrates that mFI-5 is significantly associated with mortality, pneumonia, and post-operative infection independently of age at different post-operative time-points.
- Using polynomial regression to model age versus incident 5-year post-TORS death (R²=0.99), mFI-5 scores better predicted survival than age alone.
- This highlights the utility of mFI-5 for predicting TORS outcomes.

References

1. Mascarella, M. A., Muthukrishnan, N., Maleki, F., Kergoat, M. J., Richardson, K., Mlynarek, A., Forest, V. I., Reinhold, C., Martin, D. R., Hier, M., Sadeghi, N., & Forghani, R. (2022). Above and Beyond Age: Prediction of Major Postoperative Adverse Events in Head and Neck Surgery. The Annals of otology, rhinology, and laryngology, 131(7), 697–703. https://doi.org/10.1177/00034894211041222

2. Saxena, R. (2016). Contextual age: A better indicator if aging than chronological age. International Journal of Social Sciences and Management Research. 2(1), 10-23. Contextual age.pdf (iiardjournals.org)

3. Boruk, M., Chernobilsky, B., Rosenfeld, R. M., & Har-El, G. (2005). Age as a prognostic factor for complications of major head and neck surgery. Archives of otolaryngology--head & neck surgery, 131(7), 605-609. https://doi.org/10.1001/archotol.131.7.605

4. Rockwood, K., Song, X., MacKnight, C., Bergman, H., Hogan, D. B., McDowell, I., & Mitnitski, A. (2005). A global clinical measure of fitness and frailty in elderly people. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne, 173(5), 489–495. https://doi.org/10.1503/cmaj.050051