Fea NEW ORLEANS

Vestibular Assessments Predict Intraoperative Pathology but Not Cochlear Implant Outcomes

J. Ari Saravia, MD;¹ Sara Bressler, MD;² Moises A. Arriaga, MD, MBA;³ Rahul Mehta, MD, MS;³ Anne K. Maxwell, MD⁴

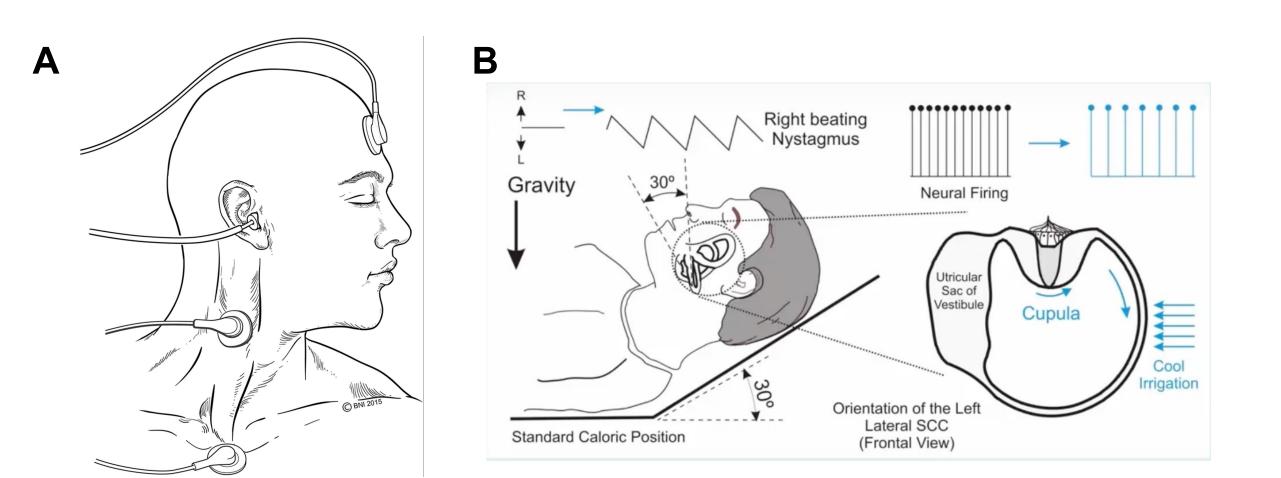
¹University of Alabama Birmingham Department of Otolaryngology, ²Children's National Medical Center, ³Louisiana State University Health Sciences Center-New Orleans Department of Otolaryngology; ⁴University of Nebraska Medical Center Department of Otolaryngology

Background

While cochlear implantation (CI) is a relatively safe procedure, vestibular dysfunction from iatrogenic insertion is a notable complication.¹ While prior studies have reported the effect of implantation on postoperative vestibular function,² there has yet to be an evaluation of vestibular findings as a predictor of clinical factors, intraoperative pathology, and hearing and speech recognition outcomes.

This study aimed to determine the association between abnormal videonystagmography (VNG, reflecting horizontal canal and superior vestibular nerve function) and cervical vestibular evoked myogenic potentials (cVEMP, reflecting saccule and inferior vestibular nerve

Results


Table 2. Hearing and Speech Recognition Outcomes based on VNG

	Pre-implant			Post-im	plant		
	Abnormal VNG (n=37)	Normal VNG (n=88)	<i>P</i> - value	Abnormal VNG (n=37)	Normal VNG (n=88)	<i>P</i> -value	
PTA	94.8±17.1	88.0±14.9	0.028	22.6±3.56	24.5±9.14	0.242	
WRS	32.4±25.4	22.8±19.5	0.081	55.0±21.8	62.4±24.3	0.140	

Figure 2. Illustration of round window and optimal cochleostomy site for CI insertion. Permission granted by Illustrator ©Chris Gralapp.

function) to preoperative clinical profile, intraoperative pathology, and post-implant hearing outcomes among adults undergoing CI.

Figure 1. Schematic representation of (A) cVEMP and (B) Caloric testing on VNG.

Methods

- Retrospective cohort study of patients who underwent CI at a single tertiary-care institution (LSUHSC) from 2017 to 2020
- Demographics, hearing history, subjective vestibular complaints, objective vestibular testing, intraoperative details, and hearing outcomes were assessed

SRT	80.7±19.7	70.8±19.8	0.025	19.7±4.83	21.3±5.35	0.133
CNC _{words}	17.7±16.9	19.6±15.5	0.625	66.2±10.6	65.1±10.4	0.905
CNC _{phonemes}	30.9±23.6	39.0±22.3	0.149	79.0±16.7	79.7±16.4	0.908
AzBio	18.9±23.3	21.4±25.8	0.623	50.9±30.3	69.3±30.3	0.135
PTA =pure tone average, WRS=word recognition score, SRT=speech reception threshold.						

Table 3. Hearing and Speech Recognition Outcomes based on cVEMP

	Pre-implant			Post-implant		
	Abnormal cVEMP (n=53)	Normal cVEMP (n=72)	<i>P</i> -value	Abnormal cVEMP (n=53)	Normal cVEMP (n=72)	<i>P</i> - value
ΡΤΑ	95.5±48.4	86.6±47.7	0.309	25.0±11.5	23.3±4.60	0.272
WRS	32.0±19.5	21.7±19.2	0.027	56.5±30.7	62.5±30.2	0.323
SRT	81.2±40.6	68.9±40.2	0.125	21.1±10.9	20.7±10.4	0.846
CNC _{words}	18.1±11.8	19.6±11.5	0.580	60.9±27.0	68.1±26.6	0.347
CNC _{phonemes}	32.9±19.5	39.0±19.1	0.176	75.5±32.3	82.0±31.8	0.476
AzBio	17.7±16.4	22.1±19.8	0.208	68.6±33.7	33.7±33.3	0.392

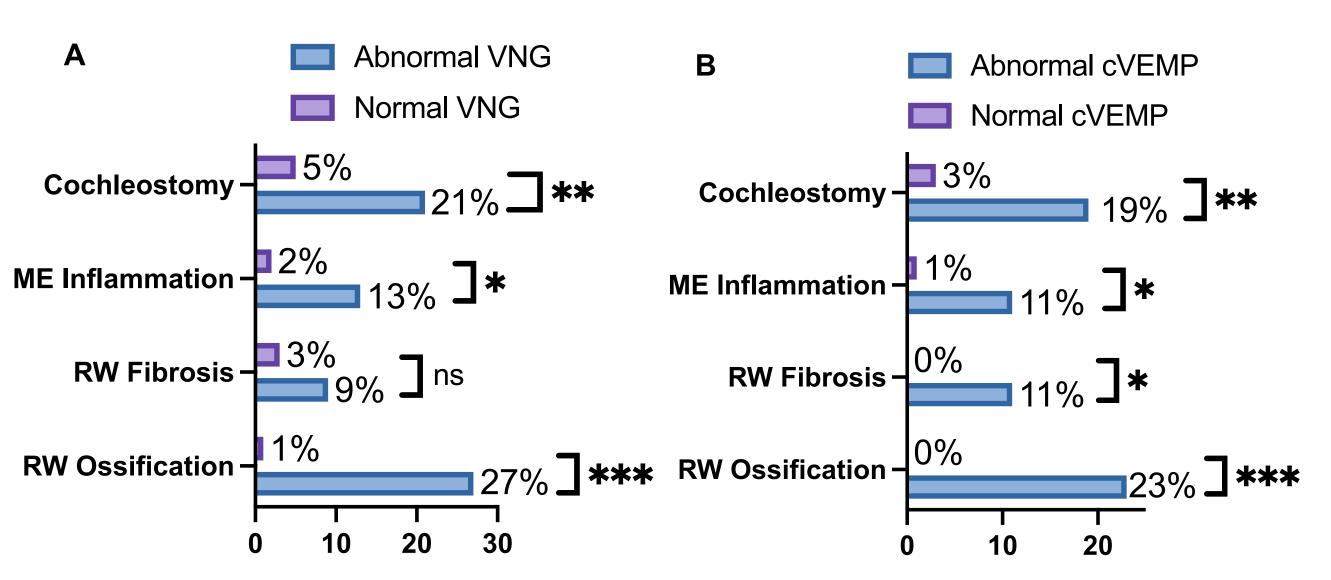


Figure 3. Association between pre-operative vestibular results and intraoperative pathology. (A) VNG (B) cVEMP * p <0.05, **p < 0.01, ***p <0.001. ME = middle ear, RW = round window

Discussion

- Preoperative vestibulopathy was not associated with post-implant hearing and speech recognition outcomes
- Abnormal pre-operative vestibular testing among adult cochlear implant candidates correlated with vertiginous symptoms preoperatively but only VNG correlated with symptoms postoperatively

Table 1. Subject Characteristics

	Abnormal VNG, n=37 (%)	Normal VNG, n=88 (%)	Abnormal cVEMP, n=53 (%)	Normal cVEMP, n=72 (%)
Mean age at implantation (range)	58 (20-84)	62 (18-88)	61 (20-88)	60 (18-88)
Sex (male %)	20 (54)	45 (51)	30 (57)	35 (49)
Type of implant Primary Sequential Bilateral	22 (59) 11 (30) 2 (5)	75 (85) 13 (15) 0	37 (7) 12 (23) 2 (4)	60 (83) 12 (17) 0
History Head trauma Meningitis Noise exposure Otosclerosis CSOM Prior ear surgery	2 (5) 11 (42) 9 (27) 3 (8) 4 (14) 6 (19)	3 (3) 0 32 (35) 1 (1) 7 (7) 7 (8)	2 (4) 10 (19) 16 (30) 4 (8) 10 (19) 11 (21)	3 (4) 1 (1) 25 (35) 0 1 (1) 2 (3)
Preoperative symptoms	22 (59)	9 (10)	23 (43)	8 (11)
Postoperative symptoms*	12 (32)	10 (12)	13 (25)	9 (13)
Persistent symptoms**	10 (29)	8 (9)	9 (19)	9 (13)

PTA =pure tone average, WRS=word recognition score, SRT=speech reception threshold, CNC=consonant-nucleus-consonant

Table 4. VNG results

CNC=consonant-nucleus-consonant

Type of response	VNG, n=37 (%)
Unilateral weakness	15 (41)
Bilateral weakness	10 (27)
Unilateral absent response	6 (16)
Bilateral absent response	5 (14)
Spontaneous nystagmus	1 (3)

Table 5. cVEMP results

Type of response	cVEMP, n=53 (%)
Reduced amplitude	4 (8)
Decreased threshold	1 (2)
Unilateral absent response	17 (32)
Bilateral absent response	31 (58)

- History of meningitis and presence of labyrinthitis ossificans correlated with abnormal VNG and cVEMP and subjective vestibular dysfunction, as expected³
- The association between abnormal vestibular findings and presence of intraoperative pathology was likely due to high rates of patients with a history of labyrinthitis
- Patients with abnormal vestibular testing were more likely to require a cochleostomy⁴ to address cochlear obstruction
- CI post-meningitis resulted in worse mean hearing outcomes⁵ in part due to partial insertion in some patients with labyrinthitis ossificans
- Abnormal preoperative vestibular findings may assist surgical planning for CI patients with a history of labyrinthitis

Conclusions

Pre-implantation vestibular assessments may assist operative planning to anticipate pathologies including round window fibrosis/ossification or middle ear inflammation, which may require cochleostomy for optimal electrode insertion. While abnormal vestibular testing may reflect baseline hearing status, it does not appear to predict post-implant hearing and speech recognition outcomes.

Age listed in years. VNG=videonystagmography, cVEMP=cervical vestibular evoked myogenic potentials, CSOM=chronic serous otitis media; *=within 1 month postop, **=beyond 6 months postop

References

1. Katsiari E, Balatsouras DG, Sengas J, Riga M, Korres GS, Xenelis J. Influence of cochlear implantation on the vestibular function. Eur Arch Otorhinolaryngol. 2013 Feb;270(2):489-95.

2. West N, Klokker M, Cayé-Thomasen P. Vestibular Screening Before Cochlear Implantation: Clinical Implications and Challenges in 409 Cochlear Implant Recipients. Otol Neurotol. 2021 Feb 1;42(2):e137-e144.

3. Wiener-Vacher SR, Obeid R, Abou-Elew M. Vestibular impairment after bacterial meningitis delays infant posturomotor development. J Pediatr. 2012 Aug;161(2):246-51.e1.

4. Richard C, Fayad JN, Doherty J, Linthicum FH Jr. Round window versus cochleostomy technique in cochlear implantation: histologic findings. Otol Neurotol. 2012 Sep;33(7):1181-7.

5. Singhal K, Singhal J, Muzaffar J, Monksfield P, Bance M. Outcomes of Cochlear Implantation in Patients with Post-Meningitis Deafness: A Systematic Review and Narrative Synthesis. J Int Adv *Otol.* 2020 Dec;16(3):395-410.

J. Ari Saravia, MD University of Alabama Birmingham Department of Otolaryngology – Head and Neck Surgery jsaravia@uabmc.edu