Nose Goes: Bowman's Glands Recovery in Hamsters Infected with COVID-19

utmb Health

Introduction

Current known mechanisms related to the COVID-19 anosmia pathology: B. Acute Respiratory Distress Syndrome (ARDS) A. Olfactory Cleft Inflammation

Question: Does SARS-CoV-2 influence the olfactory epithelium's mucus secretions, leading to anosmia?

Purpose: Analyze histological changes in Bowman's Glands (BG) of hamsters infected with SARS-CoV-2 which developed anosmia

Janisah Amirah I. Saripada BS¹, Rachel Sattler BS², Junki Maruyama BS², Slobodan Paessler DVM, PhD², Rebecca Cook BS³, Tomoko Makishima MD, PhD³ ¹ School of Medicine, ² Department of Pathology, ³ Department of Otolaryngology The University of Texas Medical Branch, Galveston, TX

BG Area Measurements: NIH outline the BG and calculate the

From these findings, we speculate that:

We speculate that olfactory behavior is enhance through the regulation of mucin production by the BG.

Conclusion

SARS-CoV-2 infection significantly **decreases** mucin production at 2 DPI and 3 DPI 2. increase in BG area at later timepoints suggests BG remodeling \rightarrow recovery can be attained post-infection 3. increase in BG area in 35 and 42 DPI suggests BG overcompensation \rightarrow increased mucin production.

Acknowledgements

