

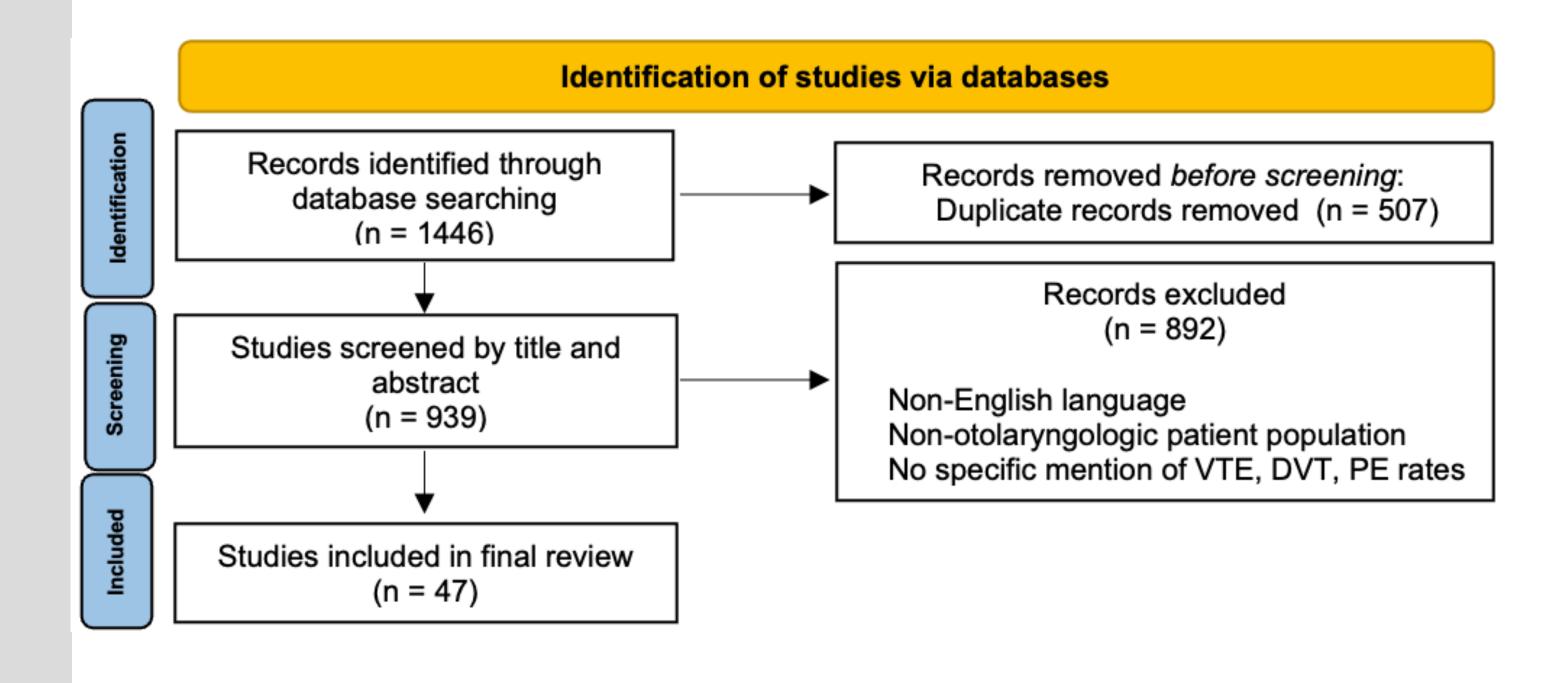
Venous Thromboembolism in the Neurotology Patient

Corinne A. Pittman, MD¹; J. Dixon Johns, MD¹; James A. Leonard, MD¹; Selena E. Briggs, MD, PhD, MBA, FACS ^{1,2}

¹ Department of Otolaryngology – Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, Washington, DC, USA

MedStar Georgetown University Hospital

¹ Department of Otolaryngology – Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, Washington DC, USA


²Department of Otolaryngology-Head and Neck Surgery, Medstar Washington Hospital Center, Washington DC, USA

Background and Introduction

- Venous thromboembolism (VTE) is a leading cause of preventable hospital death in the United States.
- Sudden death is the first symptoms in approximately one-quarter of patients with VTE¹.
- Many factors including recent surgical intervention increase the risk of VTE.
- Procedures in neurotology are known to be inherently complex, and associated with both local and systemic complications^{1,2}.
- Low rates of VTE have been reported in perioperative patients undergoing skull base surgery, thus raising question regarding the value of establishing routine VTE prophylaxis².
- To date, there is no universal guideline for VTE prophylaxis in the field of neurotology.

Methods and Materials

- A retrospective review of operative neurotologic patients from July 1, 2016 to December 31, 2022 was performed at an urban tertiary referral center.
- A review of the literature and meta-analysis of VTE in the neurotologic patient population additional was performed.

Aim

To evaluate current rates of VTE amongst the neurotologic patient population, and also present a proposed VTE prophylaxis protocol and call to arms for the development of a uniformed guideline.

Discussion

- Current guidelines for chemoprophylaxis in other surgical subspecialties may be less applicable to patients undergoing neurotologic surgery, given the low rates of VTE³.
- The decision to use preoperative chemoprophylaxis should be weighted against the potential risk for intraoperative bleeding as well as postoperative intracranial hemorrhage^{1,3}.

Results

- An institutional VTE rate of 0.2 % VTE event over the 6.5 years study period was observed.
- This was approximately one-tenth of the rate observed from review of the literature and meta-analysis.
- There was no observed increased rate of post-operative hemorrhage institutionally with a 6.5 year rate of 0.2%.

Conclusions

- A comprehensive institutional protocol for VTE prophylaxis in the neurotology patients was found to be associated with a lower rate of VTE than previously reported in the literature without increase in observed post-operative hemorrhages.
- This highlights the importance of and need for development of a standardized, universal comprehensive protocol for VTE prophylaxis in the neurotology patient population.

Figure 1.

Study	Study Design	Level of Evidence	<u>Dates of</u> <u>Study</u>	Patient Total	Hospital Status	Observation Time	Operation Type	VTE Rate
Graham et al. (1976)	Prospective (Observational	1b	(Unspecified)	35	Inpatient	Discharge	(Unspecified)	0.00%
Morreano et al. (1998)	Retrospective (Single Institution)	2b	1987-1994	2526	Inpatient	Discharge	(Unspecified)	
Slattery et al. (2001)	Retrospective (Single Institution)	2b	1987-1997	1687	Inpatient	Discharge	Vestibular Schwannoma	0.36%
Mahboubi et al. (2016)	Retrospective (Nationwide	2c	2009-2013	404	Inpatient	30 days	Vestibular Schwannoma	
Casazza et al. (2018)	Retrospective (Single Institution)	2b	2011-2016	126	Inpatient	Discharge	Vestibular Schwannoma	3.20%
Lipschitz et al. (2019)	Retrospective (Single Institution)	2b	2010-2017	205	Inpatient	30 days	Vestibular Schwannoma	2.44%
Song et al. (2019)	Retrospective (Single Institution)	2b	2008-2016	1185	Inpatient/Outpatient	30 days	Otology (Non-Oncologic)	0.00%
Fakurnejad et al. (2020)	Retrospective (Nationwide	2c	2003-2016	3420	Outpatient	30 days	Cochlear Implantation	0.06%
Goshtasbi et al. (2020)	Retrospective (Nationwide	2c	2005-2017	1405	Inpatient	30 days	Vestibular Schwannoma	
Ragavan et al. (2020)	Retrospective (Single Institution)	2b	2006-2017	216	Inpatient	30 days	Vestibular Schwannoma	
Anderson et al. (2021)	Retrospective (Single Institution)	2b	2013-2018	197	Inpatient	6 months	Vestibular Schwannoma	3.05%
Ali et al. (2021)	Retrospective (Single Institution)	2b	2009-2016	375	Inpatient	30 days	Neurotology (General)	1.29%
Current Study (2023)	Retrospective (Single Institution)	2b	2016-2022	2065	Inpatient/Outpatient	30 days	Neurotology (General)	0.19%
Total				13846				1.18%

Contact:

Selena E Briggs, MD, PhD, MBA, FACS
Department of Otolaryngology-Head and Neck Surgery,
Medstar Washington Hospital Center
Selena.Briggs@medstar.net

References:

Ali NE, Alyono JC, Song Y, Kouhi A, Blevins NH. Postoperative Venous Thromboembolism after Neurotologic Surgery. J Neurol Surg B Skull Base. 2021 Jun;82(3):378-382.

Casazza GC, Bowers CA, MacDonald JD, Couldwell WT, Shelton C, Gurgel RK. What is the safety and efficacy of chemical venous thromboembolism prophylaxis following vestibular schwannoma surgery?. Otology & Neurotology. 2018 Feb 1;39(2):e131-6.

³ Geerts W H, Bergqvist D, Pineo G F.Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) Chest 2008133(6, Suppl):381S–453S.