NSQIP-P Racial Disparities in Pediatric Head and Neck Mass Surgery

Jamie Schlacter, BS¹, Lindsey Moses, MD², Kalena Liu, BS³, Zahrah Taufique, MD²

¹NYU Grossman School of Medicine; ²Department of Otolaryngology-Head and Neck Surgery, NYU Langone Health; ³CUNY School of Medicine

INTRODUCTION

- Within pediatric otolaryngology, numerous studies have demonstrated racial disparities in access to care and outcomes¹⁻³
- Such studies have focused on otologic, rhinologic, and traumarelated conditions, but have not examined head and neck masses⁴
- Many pediatric head/neck masses are relatively uncommon, and the National Surgical Quality Improvement Program Pediatric (NSQIP-P) database offers the

METHODS

- NSQIP-P was queried from 2015-2020 for pediatric patients who underwent head/neck mass surgery according to ICD-10-CM diagnostic codes
- Primary outcomes: readmission, unplanned reoperation, and length of stay
- Secondary variables: patient demographics, comorbidities, operative time and location, and complications
- Pearson Chi-Square and Kruskal-Wallis rank sum tests were performed as well as univariate and multivariable analyses

TABLE 1. Adjusted odds ratios and 95% confidence intervals for primary outcomes

Factor		Readmissi	on	Reoperatio	on	LOS > 2 days			
		aOR (CI)	p-value	aOR (CI)	p-value	aOR (CI)	p-value		
	Asian	Reference		Reference	9	Reference			
	Non- Hispanic 2.33 (0.27, 19.93) Black		0.441	1.84 (0.23, 14.76)	0.565	0.80 (0.35,	1.85) 0.603		

RESULTS

- **4647** children (124 Asian, 604 Black, 968 Hispanic, 2218 White, and 733 Other Race) were identified with a mean age of **8.1 years** (SD: 5.3)
- Most common diagnoses were congenital malformations of other endocrine glands (73%) and malignant neoplasms of thyroid and other endocrine glands (18%)
- Black patients were least likely to have current or prior history of malignancy (11% vs. 20-32%, P < 0.001)
- Operation time and length of stay were significantly different among all patient groups (P < 0.001)
- Asian patients experienced the longest mean

operation time and length of stay at 140 minutes and 1.2 days (SD: 2.0) respectively

ability to draw conclusions from a larger patient population than is possible from a single institution

OBJECTIVE

To identify potential racial/ethnic disparities in perioperative outcomes for pediatric patients undergoing surgery for head/neck masses using **NSQIP-P**

Race/ Ethnicity	Hispanic	3.61 (0.44, 29.41)	0.230	2.47 (0.33, 18.65)	0.380	0.82 (0.38, 1.78)	0.616	
	Other Race	5.53 (0.68, 44.83)	0.109	3.09 (0.41, 23.25)	0.273	0.91 (0.42, 1.97)	0.810	
	Non- Hispanic White	5.43 (0.69, 42.97)	0.109	2.59 (0.35, 18.98)	0.350	0.78 (0.37, 1.63)	0.502	
Age		-	-	-	-	0.97 (0.94, 0.996)	0.028	
No History of Malignancy		0.995 (0.62, 1.61)	0.983	-	-	0.28 (0.19, 0.41)	<0.001	
Structural Pu Abnorma	Imonary ality	-	-	-	-	1.84 (1.02, 3.32)	0.043	
	Major	Reference		-	-	-	-	
	None	0.47 (0.15, 1.47)	0.194	-	-	-	-	
Factors	Minor	0.68 (0.15, 3.08)	0.612	-	-	_	-	
	Severe	-	-	-	-	-	-	
Structural CNS Abnormality		2.60 (1.24, 5.45)	0.012	2.08 (0.87, 4.94)	0.099	1.65 (0.87, 3.16)	0.128	
Nutritional S	Support	1.09 (0.32, 3.72)	0.896	0.99 (0.23, 4.29)	0.988	4.60 (1.54, 13.73)	0.006	
Ventilator Dep	endence	-	-	4.24 (0.94, 19.20)	0.061	0.54 (0.14, 2.16)	0.385	
	None	Reference		-	-	Reference		
SIRS/Sepsis/ Septic Shock	Sepsis	9.37 (0.92,95.26)	0.059	-	-	3.62 (0.32, 40.68)	0.298	
rior to Surgery	SIRS	4.98 (1.34, 18.52)	0.017	-	-	4.41 (1.35, 14.46)	0.014	
ransfusion Within 48 Hours Prior to Surgery		3.52 (0.45, 27.60)	3.52 (0.45, 27.60) 0.231		-	1.52 (0.19, 12.15)	0.694	
	Class 1	Reference		Reference		Reference		
	Class 2	1.42 (0.92, 2.19)	0.117	1.10 (0.70, 1.73)	0.689	2.31 (1.55, 3.44)	<0.001	
ASA Classification	Class 3	2.36 (1.27, 4.37)	0.006	2.08 (1.17, 3.72)	0.013	6.03 (3.84, 9.46)	<0.001	

- Complication rates did not significantly differ among racial/ethnic groups
- On multivariable analysis, race/ethnicity did not

significantly affect postoperative outcomes when adjusting for comorbidities (Table 1)

CONCLUSION

Disparities in length of hospital stay, readmission, and reoperation related to race/ethnicity were not identified when adjusting for comorbidities such as ASA classification and history of malignancy

Class 4	0.88 (0.10, 8.10)	0.907	4.79 (1.19,19.26)	0.027	3.10 (0.85, 11.30)	0.086		•	Further	researc	h is	neede	d to	bette	۲
---------	-------------------	-------	-------------------	-------	--------------------	-------	--	---	---------	---------	------	-------	------	-------	---

	Elective	Reference	9	Reference		Reference		unc
Case Type	Emergent	0.49 (0.06, 4.21)	0.518	4.80 (1.45, 15.93)	0.010	2.87 (0.90, 9.12)	0.075	ear
	Urgent	1.80 0.68, 4.76)	0.236	1.45 (0.46, 4.57)	0.523	2.51 (1.27, 4.97)	0.008	Cqu
Outpati	ent	0.71 (0.47, 1.06)	0.093	0.54 (0.35, 0.83)	0.005	0.08 (0.06, 0.12)	<0.001	ma

derstand driving factors for achieving uitable outcomes in pediatric head/neck

ass surgery

CONTACT

Authors have no disclosures. Email: Jamie.Schlacter@nyulangone.org

REFERENCES

Omar M, Qatanani A, Kaleem SZ, McKinnon BJ. Sociodemographic Disparities in Pediatric Cochlear Implantation Access and Use: A Systematic Review. Laryngoscope. Mar 2022;132(3):670-686. doi:10.1002/lary.29716 Shay S, Shapiro NL, Bhattacharyya N. Pediatric otolaryngologic conditions: Racial and socioeconomic disparities in the United States. Laryngoscope. Mar 2017;127(3):746-752. doi:10.1002/lary.26240 Pritchett CV, Johnson RF. Racial disparities in pediatric otolaryngology: current state and future hope. Curr Opin Otolaryngol Head Neck Surg. Dec 1 2021;29(6):492-503. doi:10.1097/moo.0000000000000759 Jabbour J, Robey T, Cunningham MJ. Healthcare disparities in pediatric otolaryngology: A systematic review. Laryngoscope. Jul 2018;128(7):1699-1713. doi:10.1002/lary.26995