

UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE

Sociodemographic Disparities in Oropharyngeal Cancer Among Floridians

Sophia Peifer BA, Garrett D. Forman BS, Uche C. Ezeh MS, Abdurrahman Al-Awady BS,

Isildinha Reis PhD, Ming Lee MD PhD, Elizabeth J. Franzmann MD

UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE

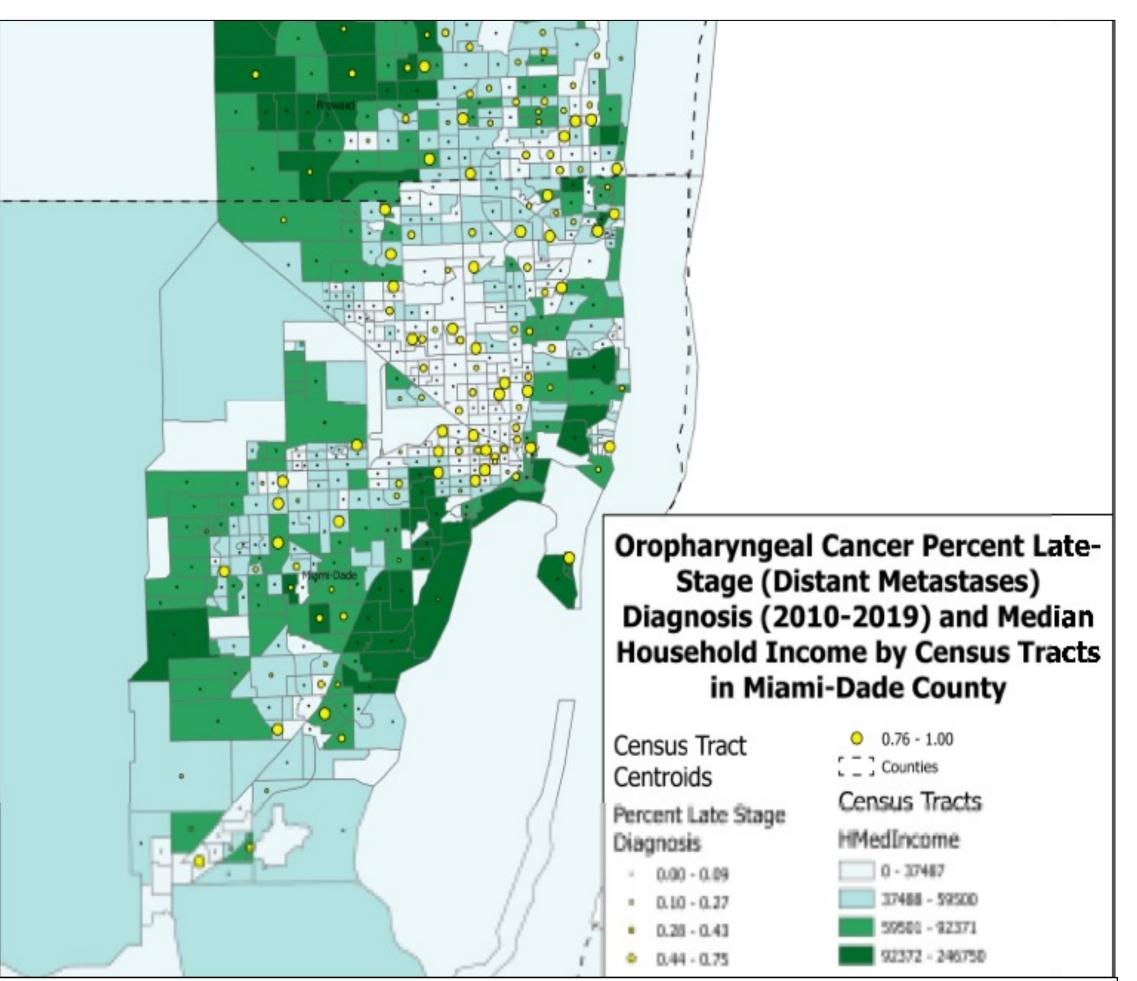
Introduction

<u>Objective</u>

 To analyze how epidemiological factors among Floridians contribute to distant stage oropharyngeal cancer (OPC)

<u>Background</u>

- OPC includes cancer of the:
 - Base of tongue
 - Palatine tonsils


Results

- 9,058 OPC cases, 7,700 (85.0%) were white non-Hispanic, 833 (9.2%) were white Hispanic, and 525 (5.8%) were Black
- OPC patients were predominantly male (n=7,485, 82.6%) and urban residents (n=6,466, 71.4%)
- 6,345 OPC patients were regional stage (70.0%), 1,157 were local stage (12.8%) and 1,556 were distant stage (17.2%)

Univariate (UVA) and Multivariate (MVA) Multinomial Logistic Regression Analysis for Likelihood of Distant Stage at Time of

Geographical Mapping Cont.

Oropharyngeal Cancer Percent Distant Stage Diagnosis (2010-2019) and Median Household Income by Census Tract in Miami-Dade County

- Soft palate¹
- In 2020, there were 98,412 new OPC cases worldwide and 48,143 deaths²
- 60-70% of OPC cases are HPV-related³
- Tobacco and alcohol usage are OPC risk factors⁴
- Distant stage OPC is more common among those who are Black⁵, male⁵, uninsured or hold public insurance⁶, and reside in rural areas⁷
- There is a need for enhanced early-stage OPC screening

Materials and Methods

Patients and Design

- Database study utilizing the Florida Cancer Data System (FCDS), a statewide cancer registry
- OPC cases diagnosed from 2010 to 2017

Diagnosis Distant vs. Local as the reference group (N= 9058)

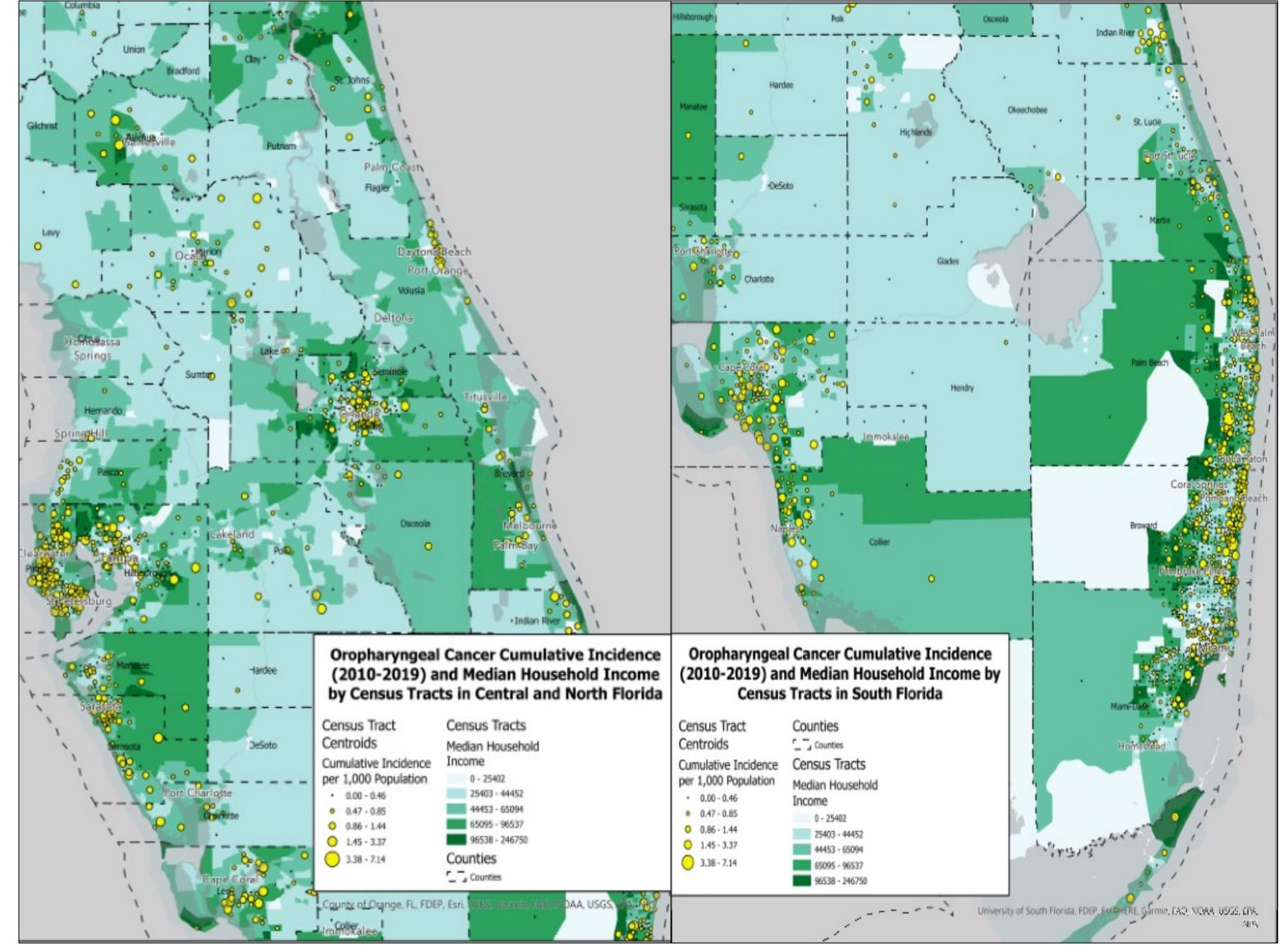
	C. UVA Distant vs. Early				D. MVA Distant vs. Early			
	OR	95% CI		P-value	OR	95% CI		P-value
Age, in years								
<60	1	Ref			1	Ref		
≥60	0.612	0.522	0.719	<.001	0.636	0.531	0.763	<.001
Race/Ethnicity								
White Non-Hispanic	1	Ref			1	Ref		
White Hispanic	0.876	0.67	1.144	0.331	0.849	0.647	1.113	0.235
Black	2.088	1.512	2.885	<.001	1.84	1.323	2.559	<.001
Sex							·	
Male	1	Ref			1	Ref		
Female	0.515	0.425	0.624	<.001	0.472	0.387	0.575	<.001
Marital status								
Married	1	Ref			1	Ref		
Single/unmarried	1.259	1.033	1.536	.023	1.295	1.063	1.58	0.01
Separated/Divorced/Widowed	1.587	1.314	1.917	<.001	1.312	1.065	1.615	0.011
Insurance Status								
Private Insurance	1	Ref			1	Ref		
Public Insurance	1.046	0.889	1.231	0.586	1.18	0.984	1.414	0.075
Uninsured	2.299	1.575	3.356	<.001	1.884	1.279	2.775	0.001
Cigarette smoking status								
Never smoker	1	Ref			1	Ref		
Current Smoker	1.719	1.375	2.149	<.001	1.487	1.182	1.872	<.001
Former Smoker	0.962	0.815	1.215	0.962	1.03	0.841	1.261	0.775
Unknown	1.082	0.851	1.375	0.521	1.069	0.839	1.362	0.589
Geographic Region								
Urban	1	Ref			1	Ref		
Rural	1.215	1.026	1.439	0.024	1.14	0.96	1.353	0.135

- Higher cumulative incidences in large metropolitan areas including Miami, Tampa, and Orlando
- Urban areas show higher percent of patients with distant stage diagnosis than rural regions
- In Miami-Dade County, lower income tracts have higher percent of distant stage OPC diagnosis

Discussion

- Cases were excluded (N = 5,064) if they were diagnosed by autopsy or were not defined as squamous cell carcinoma
- Cases with missing data about SEER stage, ethnicity, marital status, insurance status, or gender were also excluded

Outcomes and Measures


SEER stages were utilized to define disease stage:
"in situ" or "local" (SEER stage I) defined as local
"regional" (SEER stage II) defined as regional
"distant" (SEER stage III) or "systemic spread" (SEER stage IV) defined as distant⁸

<u>Analysis</u>

- Sociodemographic factors among Black and white OPC patients were compared with chi-square analysis
- Multivariable logistic regression analysis determined risk factors associated with distant stage diagnosis
- Geographical mapping of census tracts via R programming

Geographical Mapping

Oropharyngeal Cancer Cumulative Incidence (2010-2019) and Median Household Income by Census Tract. Central and North Florida (left), South Florida (right).

- Distant stage OPC at diagnosis is more common than local stage OPC among patients who are:
 - Younger than 60-years-old
 - Black
 - Male
 - Unmarried
 - Current smokers
 - Uninsured
- Younger patients are more likely to present distant stage, possibly due to increased HPV-related disease
- Current smoking status, not former status, increased the odds of distant stage disease
- Past studies demonstrate increased distant stage OPC among rural residents⁷
- Future studies should further investigate how these trends are affected by HPV status

Conclusions

OPC patients with distant stage disease experience
 many independent sociodemographic risk factors

many independent sociodemographic risk factors
These risk factors complicate early detection of OPC
Geographical mapping analysis can help direct OPC screening initiatives to at-risk communities

Contact

Sophia Peifer, BA University of Miami School of Medicine 1600 NW 10th Ave #1140, Miami, FL 33136 (856)-685-3365

References

- 1. Psyrri A, Prezas L, Burtness B. Oropharyngeal cancer. *Clin Adv Hematol Oncol*. Published online 2008. 6. C
- 2. Oropharynx. Published online 2020. Accessed April 10, 2023. <u>https://gco.iarc.fr/today</u>
- 3. Marur S, D'Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related 7. cancer epidemic. *Lancet Oncol.* 2010;11(8):781-789. doi:10.1016/S1470-2045(10)70017-6
- Hashibe M, Brennan P, Chuang SC, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology 8. Consortium. *Cancer Epidemiol Biomarkers Prev.* 2009;18(2):541-550. doi:10.1158/1055-9965.EPI-08-0347

Thompson-Harvey A, Yetukuri M, Hansen AR, et al. Rising incidence of late-stage head and neck cancer in the United States. *Cancer*. 2020;126(5):1090-1101. doi:10.1002/CNCR.32583
 Chen AY, Schrag NM, Halpern MT, Ward EM. The impact of health insurance status on stage at diagnosis of oropharyngeal cancer. *Cancer*. 2007;110(2):395-402. doi:10.1002/CNCR.22788
 Lawrence LA, Heuermann ML, Javadi P, Sharma A. Socioeconomic Status and Rurality Among Patients With Head and Neck Cancer. *Otolaryngol Head Neck Surg*. 2022;166(6):1028-1037. doi:10.1177/01945998211019278

8. Stage at Diagnosis | Data Visualizations Tool Technical Notes | CDC. Accessed August 19, 2023. https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/stage-at-diagnosis.htm#print