The role of neuromonitoring in vestibular schwannoma resection and its impact on facial nerve outcomes

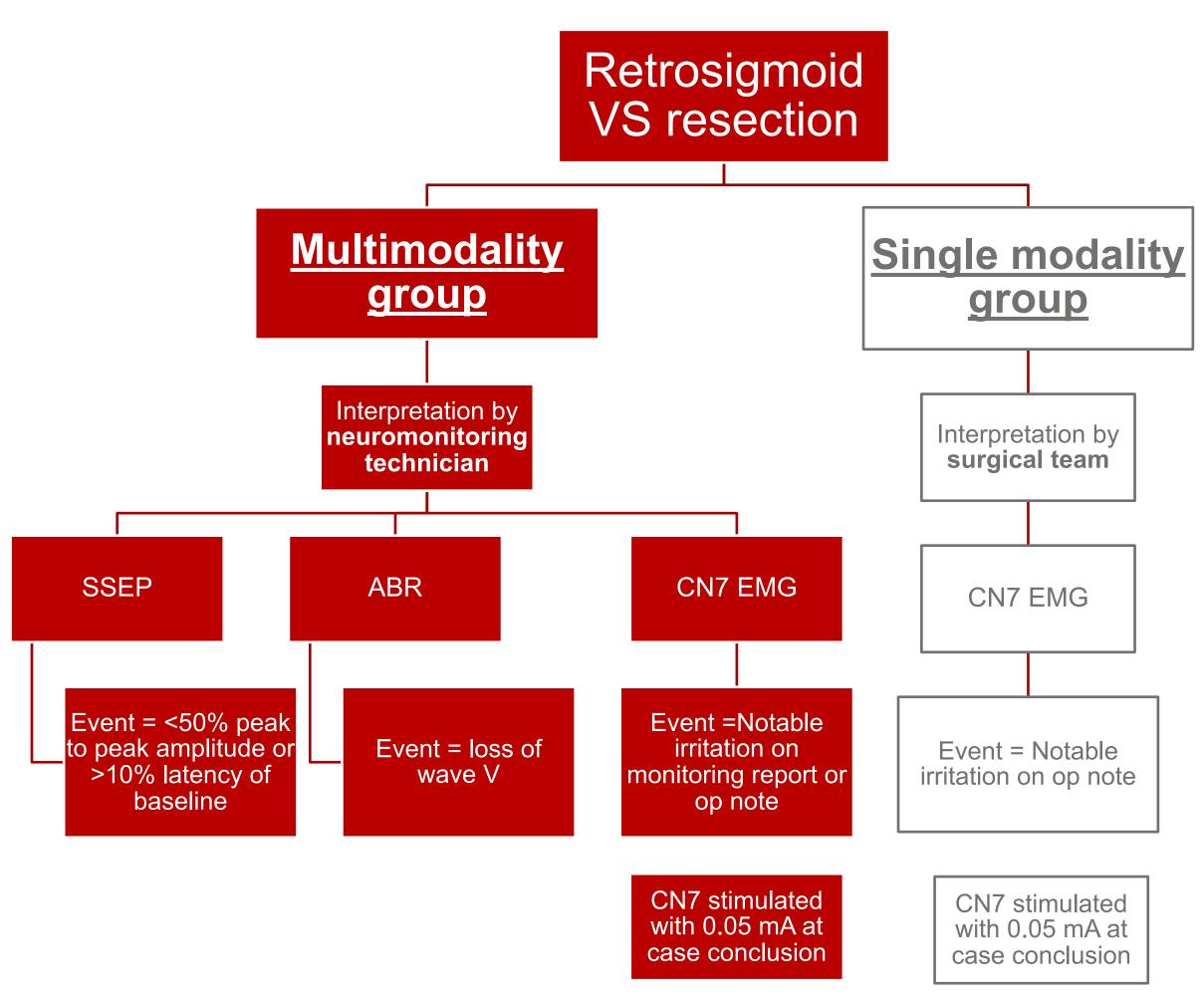
THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

Annie Orr, MD¹; Vivian F. Kaul, MD²; Edward Dodson, MD³; Daniel Prevedello, MD, MBA⁴; Oliver Adunka, MD, MBA³; Douglas Hardesty, MD⁵; Yin Ren, MD, PhD³

- 1 Department of Otolaryngology Head and Neck Surgery, University of Missouri, Columbia, Missouri, USA
- 2 Department of Otorhinolaryngology Head and Neck Surgery, University of Texas, Houston, Texas, USA
- 3 Department of Otolaryngology Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- 4 Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- 5 Department of Neurological Surgery, Creighton University, Omaha, NE, USA

Background

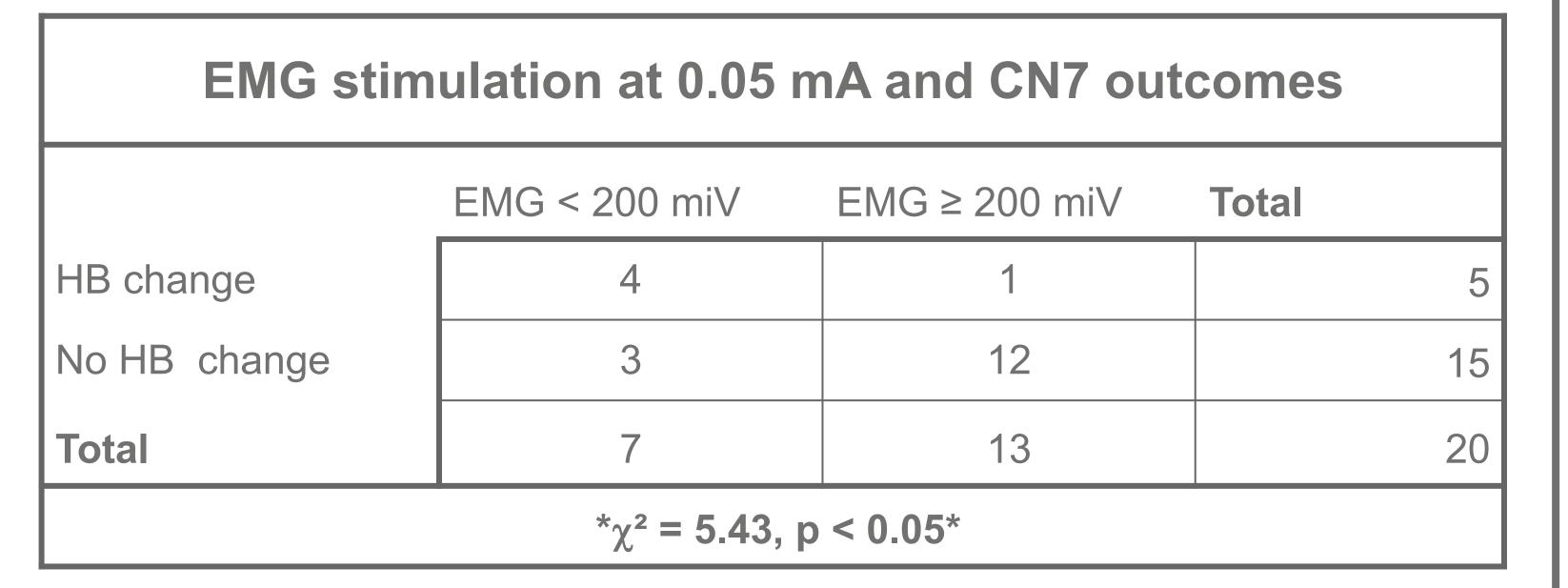

Multi-modal neuromonitoring such as SSEPs, ABR, CN7 EMG¹ in lateral skull base surgery could improve safety² but also adds cost³. The true utility of multi-modal neuromonitoring in VS surgery has not been comprehensively evaluated.

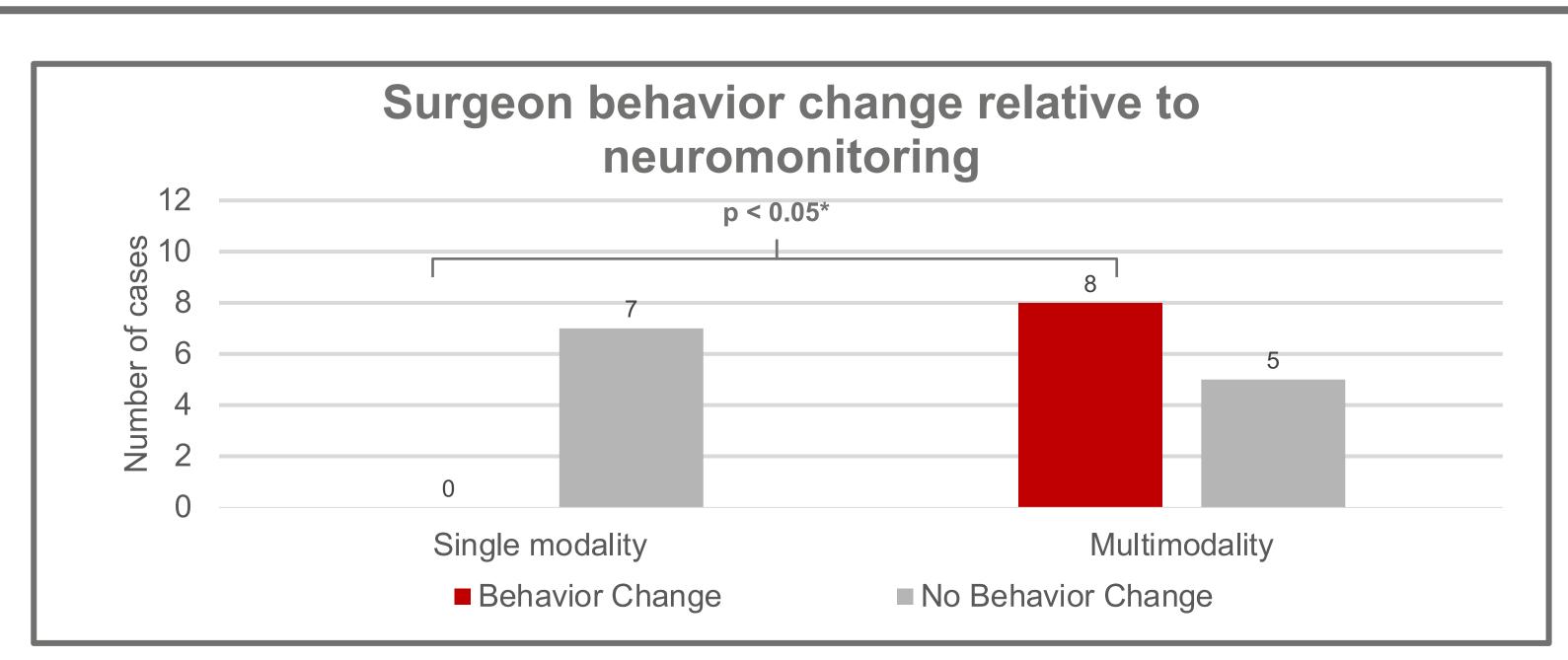
Objective

To analyze the clinical effectiveness of somatosensory evoked potentials (SSEPs), auditory brainstem response (ABR), and cranial nerve 7 electromyography (CN7 EMG) (multimodal monitoring) vs. CN7 EMG (single modality) only monitoring and compare outcomes in VS surgery.

Methods

- N=20 sporadic VS
- Multimodality: n = 13; mean age = 48.6 years
- Single modality: n = 7; mean age = 49.9 years




- CN7 EMG by the NIM Response 3.0 (Medtronic, Xomed, Jacksonville, FL, USA); SSEPs and ABR from NuVasive Clinical Services™ (San Diego)
- Outcomes:
- Facial nerve House-Brackmann
- Hearing 1995 AAO-HNS classification system⁴
- Preservation >50% WRS on pre- and post-operative audiogram
- Surgeon behavior coded from operative report
- Independent samples t-test, Chi square test, and Fischer's exact tests were used for statistical analysis.

Abbreviation Legend:

VS = vestibular schwannoma; SSEP = somatosensory evoked potentials; CN7 EMG = cranial nerve 7 electromyography; ABR = auditory brainstem response; miV = microVolts; mA = milliAmps; HB = House-Brackmann; WRS = word recognition score

Table 1. Demonstrates relationship between post-operative HB change and EMG output in miV after CN7 stimulation with 0.05 mA. Nerve simulation under 200 miV significantly more likely to have new post-operative HB deficits ($\chi^2 = 5.43$, p < 0.05).

Figure 1. Significantly more episodes of surgeon behavior change in the multimodality group vs single modality ($\chi^2 = 7.18$, p = .015). ABR and EMG influenced behavior change in 4 cases each.

Table 2. Describes hearing outcomes and ABR monitoring course for study cohort. Pre- and post-operative hearing class and hearing preservation rates are noted for each group. Tumors in multimodality group larger on average in largest dimension with near significance (p = 0.073)

Tumor		Hearing Class		Loss of ABR	Surgeon behavior	CN VIII	Hearing
Patient ID	size (cm)	Pre	Post	wave V	change from ABR?	Sacrifice	preservation
				Multimodalit	:y		
1	1.6	В	unknown	Intraoperative	yes - Paperivine use	no	16.70%
2	1.0	Α	D	Intraoperative	yes - approach changed	no	
3	1.7	В	В	None	no	no	
4	3.6	D	D	n/a - no ABR	n/a	no	
5	1.6	Α	D	Intraoperative	yes - dissection change	no	
6	2.6	Α	unknown	None	no	no	
7	2.7	Α	D	None	no	no	
8	1.4	Α	С	Baseline loss	no	no	
9	2.8	В	D	Baseline loss	no	no	
10	3.7	Α	D	Baseline loss	no	yes	
11	2.4	Α	D	Intraoperative	no - presumed artifact	no	
12	1.4	С	D	Intraoperative	yes - retraction change	no	
13	2.4	В	D	Baseline loss	no	no	
Total	2.22*	-					
				Single Modali	ity		
14	2.1	С	D	n/a	n/a	yes	14.30%
15	2.5	В	D	n/a	n/a	yes	
16	1.3	В	D	n/a	n/a	yes	
17	1.2	В	D	n/a	n/a	no	
18	1.5	С	D	n/a	n/a	no	
19	1.7	Α	Α	n/a	n/a	no	
20	1.3	Α	D	n/a	n/a	no	
Total	1.66*	_					
	* p < 0.05						

Results

- CN 7 stimulation at 0.05 mA <200 miV had significantly worse facial nerve outcomes than >200 miV (χ^2 = 5.43, p < 0.05) (Table 1).
- Single modality vs. Multimodality tumor size (Table 2)
- Volume: $(1.95 \text{ vs } 4.91 \text{ cm}^3, p < 0.05)$
- Largest dimension: (1.66 cm vs. 2.22 cm, p = 0.073)
- No difference between hearing preservation or new HB deficits between groups (χ^2 = 0.014, p = 0.91; χ^2 = 1.56, p = .212).
- Hearing outcomes predicted by wave V status in 9/10 applicable cases (Table 2).
- 8 cases with surgeon behavior change due to a monitoring event (4 EMG and 4 ABR) in multimodality group vs. 0 in single modality group ($\chi^2 = 7.18$, p = .015) (Figure 2).
- Behavior change in response to EMG was near total resection as opposed to gross total resection.
- ABR behavior change in Table 2.
- 3/13 patients with SSEP changes, however all were artifact without clinical correlation.

Discussion

- SSEP useful during cases that directly contact somatosensory pathways or major intracranial vasculature,⁵ however questionable use for positional peripheral nerve injury which can be prevented by liberal use of joint padding.⁶
- Discontinued use of SSEP during routine VS surgery is an opportunity for cost saving from equipment, anesthesia time, and OR time.⁷
- Hearing outcomes consistent with those described by Bozhkov et al:⁸
- For tumors with a largest dimension between 12mm and 25mm the hearing preservation rate is 30.3%, and only 5.3% for tumors > 25mm at the time of operation.⁸
- CN7 stimulation <200 mAmps with 73% specificity and sensitivity for predicting long term facial nerve outcomes.⁹

Conclusions

ABR and CN7 EMG provide useful information during VS resection that impacts surgeon behavior, but **SSEPs are a low utility monitoring modality in VS resection**. Discontinuing SSEPs in routine VS resections may be an opportunity for safe, cost-effective care.

References

- 1. Laratta JL, Shillingford JN, Ha A, et al. Utilization of intraoperative neuromonitoring throughout the United States over a recent decade: an analysis of the nationwide inpatient sample. J Spine Surg 2018: 4: 211-19.
- analysis of the nationwide inpatient sample. J Spine Surg 2018: 4: 211-19.

 2. Matsushima K, Kohno M, Sakamoto H, Ichimasu N, Nakajima N. Intraoperative Continuous Neuromonitoring for Vestibular Schwannoma Surgery: Real-Time, Quantitative, and Functional Evaluation. World Neurosurg 2022: 158: 189.

 3. Ament JD, Leon A, Kim KD, Johnson JP, Vokshoor A. Intraoperative neuromonitoring in spine surgery: large database analysis of cost-
- effectiveness. N Am Spine Soc J 2023: 14: 100206

 4. Committee on Hearing and Equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma).

 American Academy of Otolaryngology-Head and Neck Surgery Foundation, INC. Otolaryngol Head Neck Surg 1995: 113: 179-80.
- 5. Cruccu G, Aminoff MJ, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clinical Neurophysiology 2008: 119: 1705-19.

 6. Ellman H. Arthroscopic subacromial decompression: analysis of one- to three-year results. Arthroscopy 1987: 3: 173-81.
- 7. Saliba J, Mohammadzadeh A, Tawfik KO, et al. The Direct Costs of Microsurgical Resection of Vestibular Schwannomas. Otol Neurotol 2020: 41: 397-402.

 8. Bozhkov V, Shawarha L, Feulner L, et al. Prediction of Hearing Preservation in Vestibular Schwannoma Surgery According to Tumor Size and
- 8. Bozhkov Y, Shawarba J, Feulner J, et al. Prediction of Hearing Preservation in Vestibular Schwannoma Surgery According to Tumor Size and Anatomic Extension. Otolaryngol Head Neck Surg 2022: 166: 530-36.
- 9 Gazia F, Callejo À, Pérez-Grau M, et al. Pre- and intra-operative prognostic factors of facial nerve function in cerebellopontine angle surgery. Eur Arch Otorhinolaryngol 2023: 280: 1055-62.