# **Addressing the Neck: An NCDB Study of Clinically Node-Negative Supraglottic Squamous Cell Carcinoma**



Elsie Barry, BS<sup>1</sup>, Kelly L. Schmidt, MD<sup>2</sup>, Michael C. Topf, MD<sup>3</sup>, Patrick Tassone, MD<sup>2</sup> <sup>1</sup>University of Missouri School of Medicine, <sup>2</sup>University of Missouri, Department of Otolaryngology – Head and Neck Surgery, <sup>3</sup>Vanderbilt University Medical Center, Department of Otolaryngology – Head and Neck Surgery

Contact Patrick Tassone, MD University of Missouri - Columbia 1 Hospital Drive, Columbia, MO 65201 tassonep@health.missouri..edu

## Introduction

Early primary supraglottic squamous cell carcinoma (SSCC) may be definitive managed by radiation surgical or resection.

| Management of the neck with surgical resection |  |  |
|------------------------------------------------|--|--|
| Observation                                    |  |  |
| Elective radiation therapy                     |  |  |
| Elective neck dissection                       |  |  |

- Neck management is controversial in SSCC with a clinically node-negative neck.
- Rate of occult metastasis in cN0 SSCC ranges from 12.5-23%<sup>2-5</sup>
- Some studies suggest there is no benefit in prognosis in treatment of cN0 neck of SSCC<sup>3,6</sup>
- National practice patterns and outcomes related to neck management in cN0 surgically managed SSCC remain

| Facility Type | END | No END |
|---------------|-----|--------|
| Non-Academic  | 31% | 43%    |
| Academic      | 68% | 56%    |
| Unknown       | 1%  | 2%     |

**Table 1** Patients who were at academic centers were more likely to have END performed (OR 1.55, 95% CI 1.19-2.02, p<0.001)

| Primary Site Surgery             | END |
|----------------------------------|-----|
| Laser excision                   | 30% |
| Anterior Commissure Laryngectomy | 0%  |
| Supraglottic Laryngectomy        | 74% |
| Vertical Partial Laryngectomy    | 69% |
| Stripping                        | 0%  |
| Partial laryngectomy, NOS        | 50% |

| Multivariable Cox Proportional Hazar | d Analysis of Overall Survival |         |
|--------------------------------------|--------------------------------|---------|
|                                      | Multivariable HR (95% CI)      | р       |
| Age                                  | 1.03 (1.02-1.04)               | <0.001* |
| Male                                 | 1.16 (0.96-1.40)               | 0.126   |
| Insurance                            |                                |         |
| Private                              | [Reference]                    | N/A     |
| Medicare-Medicaid-Other government   | 1.37 (1.11-1.69)               | 0.003*  |
| Uninsured                            | 1.35 (0.84-2.16)               | 0.216   |
| Unknown                              | 0.87 (0.35-2.13)               | 0.653   |
| Charlson Comorbidity Score           |                                |         |
| 0                                    | [Reference]                    | N/A     |
| 1                                    | 1.13 (0.93-1.38)               | 0.216   |
| 2                                    | 1.22 (0.89-1.67)               | 0.207   |
| 3+                                   | 1.34 (0.90-1.99)               | 0.145   |
| Facility Type                        |                                |         |
| Non-academic                         | [Reference]                    | N/A     |
| Academic                             | 1.34 (0.90-1.99)               | 0.331   |
| pT Stage                             |                                |         |
| 1                                    | [Reference]                    | N/A     |
| 2                                    | 1.29 (1.04-1.59)               | 0.021*  |
| 3                                    | 1.35 (1.06-1.72)               | 0.017*  |
| 4                                    | 1.73 (1.15-2.59)               | 0.008*  |
| Neck Dissection                      |                                |         |
| Not performed                        | [Reference]                    | N/A     |
| Performed                            | 0.93 (0.77-1.13)               | 0.476   |
| Lymphovascular Invasion              |                                |         |
| Absent                               | [Reference]                    | N/A     |
| Present                              | 1.53 (1.06-2.21)               | 0.025*  |
| Unknown                              | 1.37 (1.13-1.65)               | 0.001*  |
| Margins                              |                                |         |
| Negative                             | [Reference]                    | N/A     |
| Positive                             | 1.06 (0.83-1.33)               | 0.653   |
| Unknown                              | 0.89 (0.63-1.26)               | 0.523   |
| Adjuvant Radiation                   |                                |         |
| Not given                            | [Reference]                    | N/A     |
| Given                                | 1.25 (10.02-1.54)              | 0.034*  |
| Unknown                              | 1.06 (0.49-2.27)               | 0.883   |
|                                      |                                |         |

#### understudied

#### **Objectives**

- 1. Identify the proportion of patients undergoing elective neck dissection for SSCC addressed with partial laryngectomy
- 2. Examine rates of adjuvant therapy after surgical management with or without neck dissection
- 3. Assess associations between neck management and overall survival.

# **Methods and Materials**

Patient data derived from the NCDB 2019 participant user file.

Inclusion criteria: primary site tumor of the supraglottis identified by ICD-10 C32.1; invasive squamous cell carcinoma histology identified by ICD-10 8051-8084 and 8120-8131; previously untreated cancers; and surgery of primary site including transoral or transcervical partial laryngectomy; clinical stage N0

**Exclusion criteria**: total laryngectomy, clinical or pathologic M1 stage; unknown clinical N stage; unknown pathologic T stage; pathologic T stage 0 or Tis; unknown whether lymphadenectomy was performed; and unknown whether postoperative radiation therapy was given.

 
 Table 2 Percent of time patients received END based on
primary surgery. Compared to laser excision, patients undergoing supraglottic laryngectomy (OR 4.64, 95% CI 3.35-6.46, p<0.001) and open partial laryngectomy (OR 1.96, 95% CI 1.32-2.92, p<0.001) were more likely to have elective neck dissection.

|               |                                    | Multivariable OR (95% CI) | p-value  |
|---------------|------------------------------------|---------------------------|----------|
| Age           |                                    | 0.98 (0.96-0.99)          | 0.002*   |
| Insurance     |                                    |                           |          |
|               | Private                            | [Reference]               | N/A      |
|               | Medicare-Medicaid-Other government | 0.91 (0.69-1.21)          | 0.516    |
|               | Uninsured                          | 1.98 (0.90-4.70)          | 0.104    |
|               | Unknown                            | 6.72 (1.29-123)           | 0.07     |
| Facility Type |                                    |                           |          |
|               | Non-academic                       | [Reference]               | N/A      |
|               | Academic                           | 1.55 (1.19-2.02)          | 0.001*   |
|               | Unknown                            | 0.48 (0.17-1.46)          | 0.179    |
| pT Stage      |                                    |                           |          |
|               | 1                                  | [Reference]               | N/A      |
|               | 2                                  | 1.7 (1.27-2.29)           | <0.001*  |
|               | 3                                  | 2.31 (1.61-3.34)          | <0.001*  |
|               | 4                                  | 2.4 (1.25-4.80)           | 0.01*    |
| Margins       |                                    |                           |          |
|               | Negative                           | [Reference]               | N/A      |
|               | Positive                           | 0.25 (0.18-0.36)          | < 0.001* |
|               | Unknown                            | 0.4 (0.24-0.66)           | < 0.001* |
| Lymphovasc    | ular Invasion                      |                           |          |
|               | Negative                           | [Reference]               | N/A      |
|               | Positive                           | 2.48 (1.34-4.83)          | 0.005*   |
|               | Unknown                            | 0.52 (0.40-0.68)          | < 0.001* |
| Primary Site  | Surgery                            |                           |          |
|               | Laser excision                     | [Reference]               | N/A      |
|               | Anterior Commissure Laryngectomy   | High (Low-High)           | 0.991    |
|               | Supraglottic Laryngectomy          | 4.64 (3.35-6.46)          | <0.001*  |
|               | Vertical Partial Laryngectomy      | 2.55 (0.70-10.7)          | 0.167    |
|               | Stripping                          | Low (Low-High)            | 0.972    |
|               | Partial Laryngectomy, NOS          | 1.96 (1.32-2.92)          | < 0.001* |
|               |                                    |                           |          |

**Table 3** Multivariable logistic regression analysis of elective neck dissection. Factors with p<0.05 on univariable logistic regression analysis were included in

Table 3 Multivariable Cox proportional hazard analysis of overall survival. Factors with p<0.05 on univariable survival analysis were included in multivariable analysis. \*p<0.05

## Discussion

- The rate of occult metastasis for cN0 SSCC was 22%, yet 40% of patients with cN0 SCC did not receive END.
- Patients treated at academic centers were more likely to receive END.
- Patients who had open partial laryngectomy were more likely to have END than patients undergoing laser excision.
- After END, patients were less likely to receive adjuvant radiation therapy without a decrease in overall survival.

# **Study Limitations**

Elective neck dissection was defined as a patient having lymph nodes examined for pathologic review.

#### Statistical analysis:

- To examine factors associated with elective neck dissection, univariable followed by multivariable logistic regression analysis was used with neck dissection as a binary outcome. Factors with p<0.05 on univariable analysis were included in multivariable analysis.
- To examine associations between patient, surgical and pathologic factors with overall survival, univariable followed by multivariable Cox proportional hazard analysis was performed. Factors with p<0.05 on univariable analysis were included in multivariable analysis.

## **Results**

- 1352 patients met inclusion and exclusion criteria.
- 811 patients (60%) underwent elective neck dissection (END).



multivariable analysis. \*p<0.05

1.10, p=0.291)



**Fig. 2** 26% of END patients had adjuvant radiation therapy (RT), versus 40% of no END patients (p<0.001)



- Retrospective study that does not have information on laterality of neck dissections.
- No information on disease-free survival, local control, or regional control after treatment (NCDB).
- Functional data not available, although outcomes are closely related to the extent of laryngeal surgery performed<sup>7, 8</sup>

## **Conclusions**

- Many patients do not receive elective neck dissection with resection of primary supraglottic squamous cell carcinoma, despite relatively high rates of occult metastasis.
- Patients who receive elective neck dissection are less likely to receive adjuvant radiation therapy.

| References                                                                                       |                |
|--------------------------------------------------------------------------------------------------|----------------|
|                                                                                                  |                |
| 1. Cancer of the Larynx - Cancer Stat Facts. SEER. Accessed August 16, 2023.                     |                |
| https://seer.cancer.gov/statfacts/html/laryn.html                                                |                |
| 2. Sanabria A, Shah JP, Medina JE, et al. Incidence of Occult Lymph Node Metastasis in Pri       | mary Larynx    |
| Squamous Cell Carcinoma, by Subsite, T Classification and Neck Level: A Systematic Re            | view.          |
| Cancers. 2020;12(4):1059. doi:10.3390/cancers12041059                                            |                |
| 3. Sharbel DD, Abkemeier M, Groves MW, Albergotti WG, Byrd JK, Reyes-Gelves C. Occult            | Metastasis in  |
| Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Ann Otol               | Rhinol         |
| Laryngol. 2021;130(1):67-77. doi:10.1177/0003489420937744                                        |                |
| 4. Djordjevic V, Bukurov B, Arsovic N, et al. Prospective case-control study of efficacy of bila | ateral         |
| selective neck dissection in primary surgical treatment of supraglottic laryngeal cancers w      | ith clinically |
| negative cervical findings (N0). Clin Otolaryngol. 2016;41(6):634-639. doi:10.1111/coa.12        | 570            |
| 5. Deganello A, Gitti G, Meccariello G, Parrinello G, Mannelli G, Gallo O. Effectiveness and p   | pitfalls of    |
| elective neck dissection in N0 laryngeal cancer. Acta Otorhinolaryngol Ital. 2011;31(4):216      | 5-221.         |





