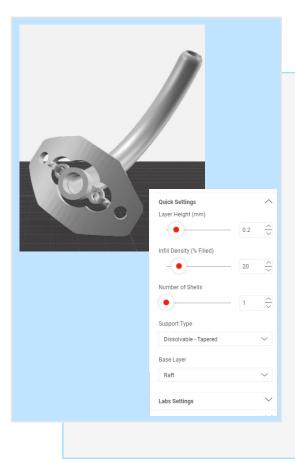
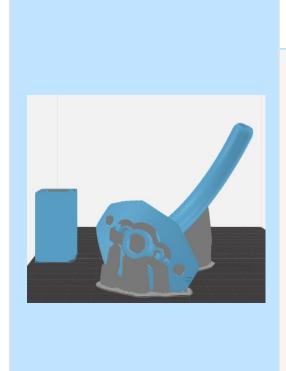


Introduction


Tracheostomy is a common otolaryngology procedure and there are a variety of standard tracheostomy tubes available. For some patients, the available tracheostomy tubes do not ideally fit due to obesity or anatomical variations. In addition, there has been a shortage of available standard tracheostomy tubes and long wait times for custom tracheostomy tubes with recent supply chain issues.

Material and methods


Design STL file

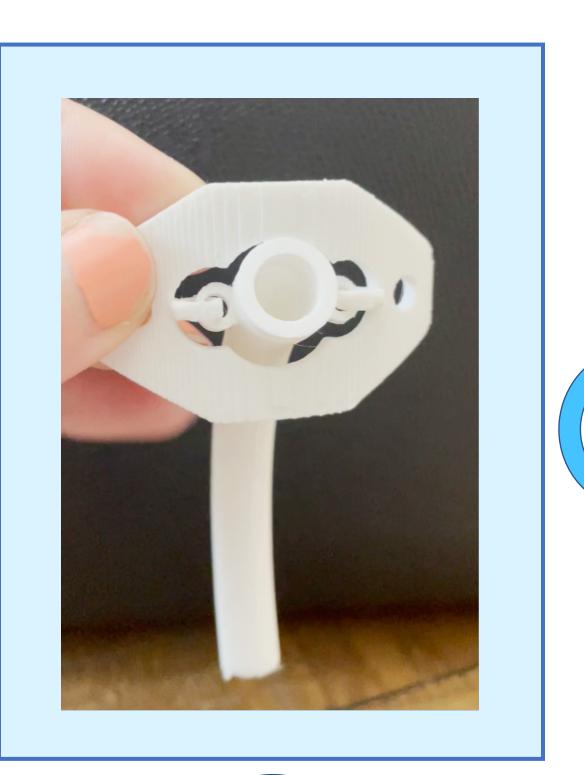
- Can easily manipulate dimensions
- Plan movement mechanism

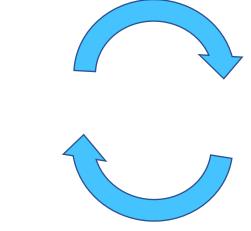
Slicing software

- Integrated into Makerbot
- Set printing parameters
- Impacts tensile strength and diameter

Print

- Maker Bot Method Conrad X 3-D printer
- PLA- biocompatible
- PVA- dissolvable support


Post processing


• Dissolve PVA

Point of Care 3D Printing of Tracheostomy Tubes Mikayla Huestis, MD; Barry Strasnick, MD Eastern Virginia Medical School, Department of Otolaryngology – Head & Neck Surgery

Results

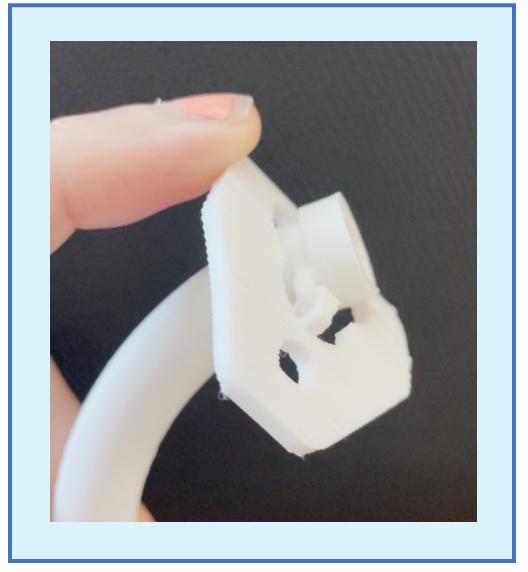


Figure 1. Final optimized product with movement mechanism. Print time 5 hours. PVA dissolution time 12 hours.

Figure 2. Final optimized product comparable size and design to 6 Shiley trach.

Future Directions

- > Test durability
- > Test structural integrity after sterilization
- Post processing modifications
- Smooth ridges
- > Possible coating with potential drug delivery
- > Approval for clinical use
- Less rigorous standards, not implantable,
 - use <30 days

Conclusion

This successful 3D print lays the groundwork for custom 3D printing tracheostomy tubes at the point of care for planned tracheostomy procedures.

References

Acknowledgements

Dr. Doncel's lab for use of 3D Printer - Gustavo Doncel, MD, PhD, CONRAD Scientific and Executive Director - Sucharita Dutta, PhD, CONRAD Research Analyst

- 1. (2022, October, 31). *Reuse Tracheostomy Tubes or Switch to* Appropriate Alternatives During Shortage: FDA Safety
- *Communication.* FDA. https://www.fda.gov/medical-devices/safetycommunications/reuse-tracheostomy-tubes-or-switch-appropriatealternatives-during-shortage-fda-safety-communication
- 2. Fink, J. (2022, November, 15). *Tracheostomy Supply Shortages are Threatening Patient Health.* ENT Today.
- https://www.enttoday.org/article/tracheostomy-supply-shortages/ 3. Huestis MJ, Kahn CI, Tracy LF, Levi JR. Facebook Group Use among Parents of Children with Tracheostomy. *Otolaryngol Head Neck Surg*. 2020;162(3):359-361. doi:10.1177/0194599820901528
- 4. Jung H, Lee JS, Lee JH, Park KJ, Lee JJ, Park HS. A Feasibility Study for 3D-printed Poly(methyl methacrylate)-resin Tracheostomy Tube Using a Hamster Cheek Pouch Model. In Vivo. 2020;34(4):1749-1758. doi:10.21873/invivo.11968
- 5. Pérez Davila S, González Rodríguez L, Chiussi S, Serra J, González P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers (Basel). 2021 Jun 28;13(13):2115. doi: 10.3390/polym13132115. PMID: 34203204; PMCID: PMC8271615.

