

- - activation adjustment

Objectives

- To delve into the relationship between need for early postactivation adjustment and long-term surgical sleep outcomes
- To uncover significant predictors of the need for postactivation adjustment

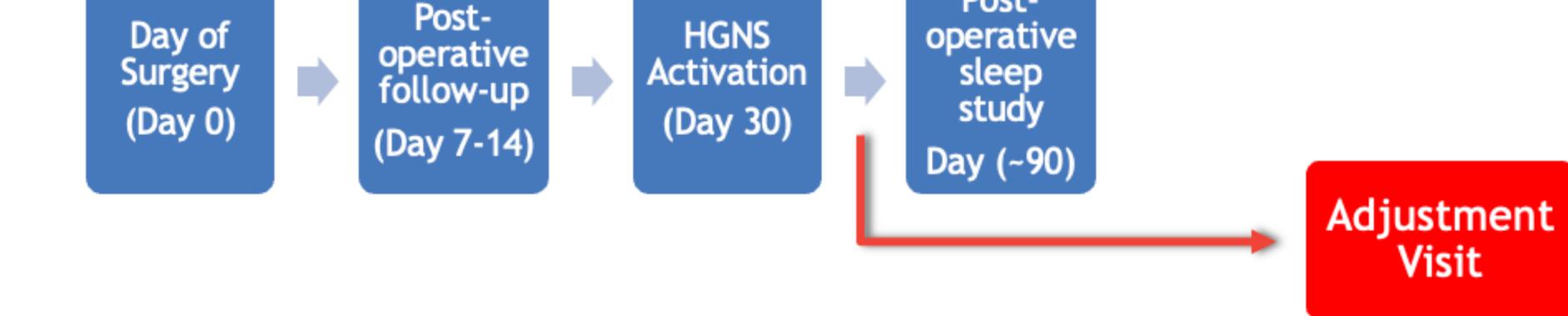
Figure 1: Comparison of patients with post-activation intolerance requiring adjustment vs patients not requiring post-activation adjustment. Left-hand graph showing statistically significant increase in post-operative AHI when comparing the two groups [12.5 vs 21.3; *p*= *o.oo2*]. Right-hand graph showing statistically significant increase in post-operative O2 Nadir when comparing the two groups [**85.6**] **vs 82.2**; **p** = **0.009**]. P values were calculated using Independent T-Tests to compare averages between groups.

		<u>Tabl</u>	le 1: Stu	dy Sample	e Demographics			
<u>Demographics</u>			<u>Total</u>		<u>Adjustment</u>		<u>No Adjustment</u>	<u>P-value</u>
<i>n</i> =				16	30 (26%)		86 (74%)	
Age			64.5		61.7 [11.4]		65.5 [11.8]	.062
Sex	Male		76 (65%)		22 (73%)		54 (61%)	.248
	Female		40 (35%)		8 (27%)		32 (39%)	
Race	Caucasian		107 (92%)		28		79	
	Black/African American		6 (5%)		6		2	
	Asian		1 (1%)		1		Ο	
	Hispan	ic	2 (2%)		0		2	
BMI			28.6		29.4 [2.9]		28.3 [3.5]	.049
<u>Variable</u>	<u>Coef (B)</u>	<u>S.E.</u>		Odds I	<u>Ratio (Exp (B))</u>	<u>95%</u>	<u>CI Upper-Lower</u>	<u>P-value</u>
Sleep Latency (min)	-0.075	0.038		0.927			0.861 - 0.999	.046
Nightly Wake-ups	-0.075	0.108		0.928		0.75 - 1.147		.488
Insomnia Severity Index	0.097	0.071		1.102		0.959 - 1.266		.172
Total VOTE Score	1.018	0.412		2.767		1.234 - 6.203		.014
Presence of OP Obstruction	-0.737	0.8	0.895		0.478		0.083 - 2.762	.41

able 1: Demographic data relative our patient cohort.

116 total patients; 30 (26%)

Methods


- Single-institution, retrospective study
- All patients that underwent HGNS placement from 1/1/2020-12/31/2021 were reviewed
- Primary endpoints were post-operative AHI and postoperative O2 Nadir
- Secondary endpoints were to find predictors of postactivation intolerance:
 - Sleep latency, nightly wake-ups, insomnia severity index (ISI), total VOTE score, presence of OP obstruction on DISE
- Post-activation intolerance was defined as any patient needing an "adjustment visit"
- "<u>Adjustment visits</u>" were defined as any visit that occurred after initial activation of the device, before post-operative sleep study that included modification of the device settings

requiring post-activation adjustment

- Cohort was a majority male/Caucasian
- Patients requiring adjustment had significantly higher BMI than those that did not.

ble 2: Results of multivariate nalysis looking for predictors of ost-activation adjustment

- Decreasing sleep latency was found to be predictive of needing post-activation adjustment
- Increasing total VOTE score on DISE was found to be predictive of needing post-activation adjustment.

Post-

- Hypoglossal Nerve Stimulator patients that show early post-activation intolerance of the device requiring in-office adjustment have worse long-term surgical sleep outcomes.
- Patients with higher BMI, more severe obstruction, and lower sleep latency were more likely to present to the office needing post-activation adjustment.

