Evaluating Inflammatory Markers as a Predictor of Adenotonsillectomy (AT) Success

Diane Lee BS¹, Peter Karempelis, MD², Kalpnaben Patel, CCRP^{3,4}, Brittany Lipscomb, CCRP^{3,4}, Heidi Chen, PhD^{3,5}, Shilin Zhao, Ph3^{2,5}, Amy S. Whigham, MD, MS-HPEd^{3,4} ¹Vanderbilt University School of Medicine, ²Pediatric Ear, Nose & Throat Specialists, ³Surgical Outcomes Center for Kids,⁴Vanderbilt University Medical Center Department of Otolaryngology-Head and Neck Surgery, ⁵Vanderbilt University Medical Center Department of Biostatistics

INT	RO	DL	JCT	ION

- Obstructive sleep apnea (OSA) is prevalent in the overweight and obese pediatric population.¹
- Systemic inflammatory markers such as C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-a) are elevated in pediatric patients with obstructive sleep apnea (OSA) and obesity.^{2,3}
- Inflammatory marker levels have been seen to decrease post-adenotonsillectomy.³⁻⁵
- Furthermore, decreases in inflammatory markers have

Characteristic	Ν	Median (IQR) or N (%)
Median Age	20	9.5 (7.0, 11.5)
Sex Female Male	20	10 (50%) 10 (50%)

20

20

19

20

20

(5%)

11 (55%)

25 (5%)

19 (95%)

18 (90%)

16 (80%)

87 (84, 90)

85 (75, 91)

10 (5, 24)

9.4 (4.3, 23.0)

3 (15%)

3 (5%)

RESULTS

RESULTS (CONTINUED)

Table 3: CRP and Clinical Outcomes

Outcome	Test statistic	p-value
Postoperative SaO2	r=0.12	p=0.786
AHI	r=-0.26	p=0.528
ΟΑΗΙ	r=-0.26	p=0.528

Table 4: TNF-a and Clinical Outcomes

Outcome	Test statistic	p-value	
Postoperative SaO2	r=-0.15	p=0.749	
AHI	r=0.19	p=0.691	
OAHI	r=0.19	p=0.195	
Fable 5: Cost Analysis			
ltem	Cost per patient		
Venipuncture	\$18.01		
CRP lab test	\$8.00		
TNF-a lab test	\$61.44		
Total	\$87.45		

been associated with improvement in apnea-hypopnea index values (AHI).⁵

Aim: To evaluate the ability of CRP and TNF-a to predict clinical outcomes after adenotonsillectomy (AT) in pediatric patients with OSA.

HYPOTHESIS

- **Primary hypothesis:** Decreased postoperative levels of inflammatory markers will be associated with improved clinical outcomes.
- Secondary hypothesis: The economic impact of measuring preoperative inflammatory markers will be minimal.

METHODS

POPULATION:
I OI ULAIION.

Asian Black/African American White Unknown/Not reported

Race

Preoperative Diagnoses20Obstructive sleep apneaSnoring/Sleep disordered breathingChronic tonsillitis/adenotonsillitisTonsillar hypertrophy

Baseline PSG Data

Sleep efficiency Arterial oxygen nadir (SaO2) Obstructive AHI Total AHI

Table 2: Overall Clinical Outcomes

Outcome	Ν	Median (IQR) or N (%)
Postoperative PSG Data Sleep efficiency Arterial oxygen nadir (SaO2) Obstructive AHI Total AHI	8	90.5 (86.2, 92.2) 88.5 (82.0, 89.2) 2.9 (1.8, 4.8) 4.0 (2.6, 7.4)
Postoperative follow-up	20	17 (85%)
Resolution of OSA	20	11 (65%)
Persistent OSA Symptoms Mild snoring Mouth breathing Pauses and gasping None	20	3 (15%) 1 (5%) 1 (5%) 14 (70%)

CONCLUSION

• There is no association between inflammatory biomarkers and postoperative clinical measurements (p>0.05).

• The institutional cost of labs per patient was approximately \$87.40 per patient.

- 20 pediatric patients diagnosed with OSA undergoing AT
- VCH from August 2018 October 2019

EXPOSURE:

- Preoperative CRP and TNF-a levels
 Measured via standard of care blood draw prior to surgery

OUTCOMES:

V

- Primary: polysomnogram data (lowest arterial oxygen saturation (SaO2), total apnea hypopnea index (AHI), and obstructive apnea hypopnea index (OAHI)
- Secondary: cost per patient

Preoperative Biomarkers

CRP elevated	20	17 (85%)
TNF-a elevated	17	0 (0%)

Figure 1: Pre vs Postoperative Polysomnogram Data

- These findings differ from previous studies on inflammatory markers.
- Further investigation needs to be completed before implementation of biomarkers as a predictor of treatment success.
- Limitations: Single-center study, small study population, limited postoperative PSG data
- Future directions: Study of the relationship between biomarkers and other signs of clinical improvement with OSA post-AT.

ACKNOWLEDGEMENTS

I would like to especially thank my mentor, Dr. Whigham, Dr. Chen, Dr. Zhao, and Kalpnaben Patel for their support of this project.

STATISTICAL ANALYSIS:
IRB-approved prospective case series

Analysis: Spearman's rank correlation

