

Dentistry Pediatric Dentistry

Matthew Nguyen¹, Márcia Dinis¹, Leonela Nelson², Kristen Roessler², Shea Littlepage², Lisa Cohoe², Kimberlyn Yazzie², Reese Cuddy², Laura Hammitt², Daniela Rodrigues Silva¹, Catherine Sutcliffe², Nini C. Tran¹ ¹Section of Pediatric Dentistry, School of Dentistry, UCLA, Los Angeles, CA, USA ²Center for Indigenous Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Introduction

Early Childhood Caries (ECC) is one of the most prevalent, preventable childhood diseases and has long-term health consequences^{1,2}. ECC impacts Indigenous children at an earlier age, with a higher prevalence, and with greater severity compared to the general US population due to early exposure to dietary sugar and previously correlated with limited access to clean water, health care, nutritious foods, and related early dietary sugar intake due to loss of healthy traditional diets and lifeways promulgated by colonization and ongoing historical and modern traumas³⁻⁵.

A recent sugar reduction educational program was implemented in the Shiprock community in the Navajo Nation⁶. Frequent sugar consumption can shift the oral microbiome composition towards more acid-producing, acidtolerating species. However, the metabolic activity of the oral microbiome as it relates to ECC remains relatively $unknown^7$.

The purpose of this study is to evaluate the impact of a sugar reduction program on the metabolic function of the oral microbiome and to investigate the relationship between the oral metabolome and ECC among Navajo infants.

- The Navajo Nation is the largest reservation in the US, covering 27,673 mi²
- Median household income: \$27,389
- Poverty rate: 38%
- 44% of children <18 years of age live in poverty
- 13 grocery stores across the entire Navajo Nation
- Many community members report being food insecure⁸

Materials & Methods

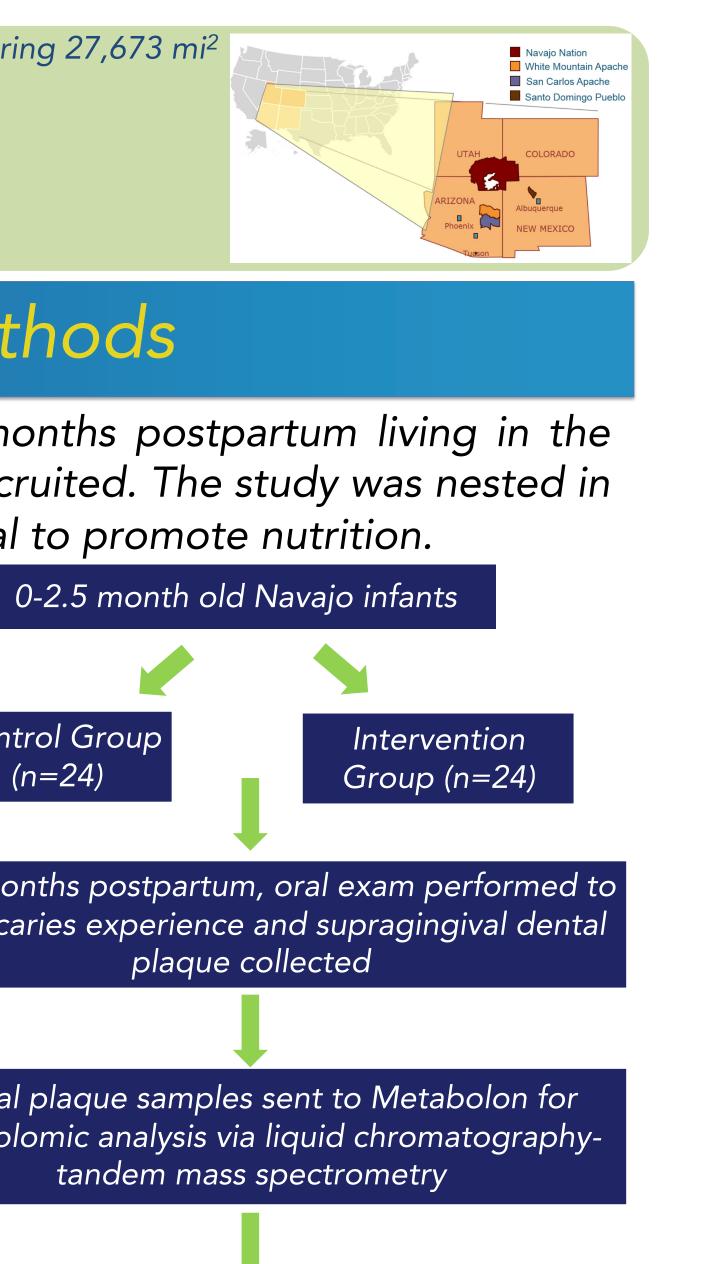
Navajo mothers and their infants aged 0-2.5 months postpartum living in the Northern Navajo Medical Center region were recruited. The study was nested in an early childhood home-visiting intervention trial to promote nutrition.

<u>Control Group</u>

- 3 home-visiting lessons delivered by local Indigenous Family Health Coaches on home and child safety
- Clean water delivery

Intervention Group

• 6 home-visiting lessons delivered by by local Indigenous Family Health Coaches on: 1) avoid feeding children sugar sweetened beverages, 2) continued breast-feeding 3) responsive feeding, 4) optimal introduction of complementary foods


Clean water delivery

Control Group (n=24) At 12 months postpartum, oral exam performed to assess caries experience and supragingival dental plaque collected Dental plaque samples sent to Metabolon for metabolomic analysis via liquid chromatographytandem mass spectrometry

Metabolite relationships analyzed via t-tests and the Benjamini-Hochberg False Discovery Rate to correct for multiple hypothesis testing

This study is funded by NIDCR R03DE029301 NCT.

Metabolomic Insights into Early Childhood Caries Among Navajo Infants

Table 1. Study cohort characteristics.					
Characteristics of study participants at 12m of age					
Study Group	A (n=24)	B (n=24)			
Gender					
Female	16	10			
Male	8	14			
Dentition at 12m	mean ± SD	mean ± SD			
Total Teeth	8.3±2.0	7.8±2.2			
Anterior Teeth	7.9±1.6	7.3±1.7			
Posterior Teeth	0.4±0.8	0.5±1.1			
Caries Experience					
Caries-affected	15	16			
Caries-free	9	8			
dmft Index	2.9±3.3	2.8±3.1			

Table 2. The number of statistically significant metabolites between groups.

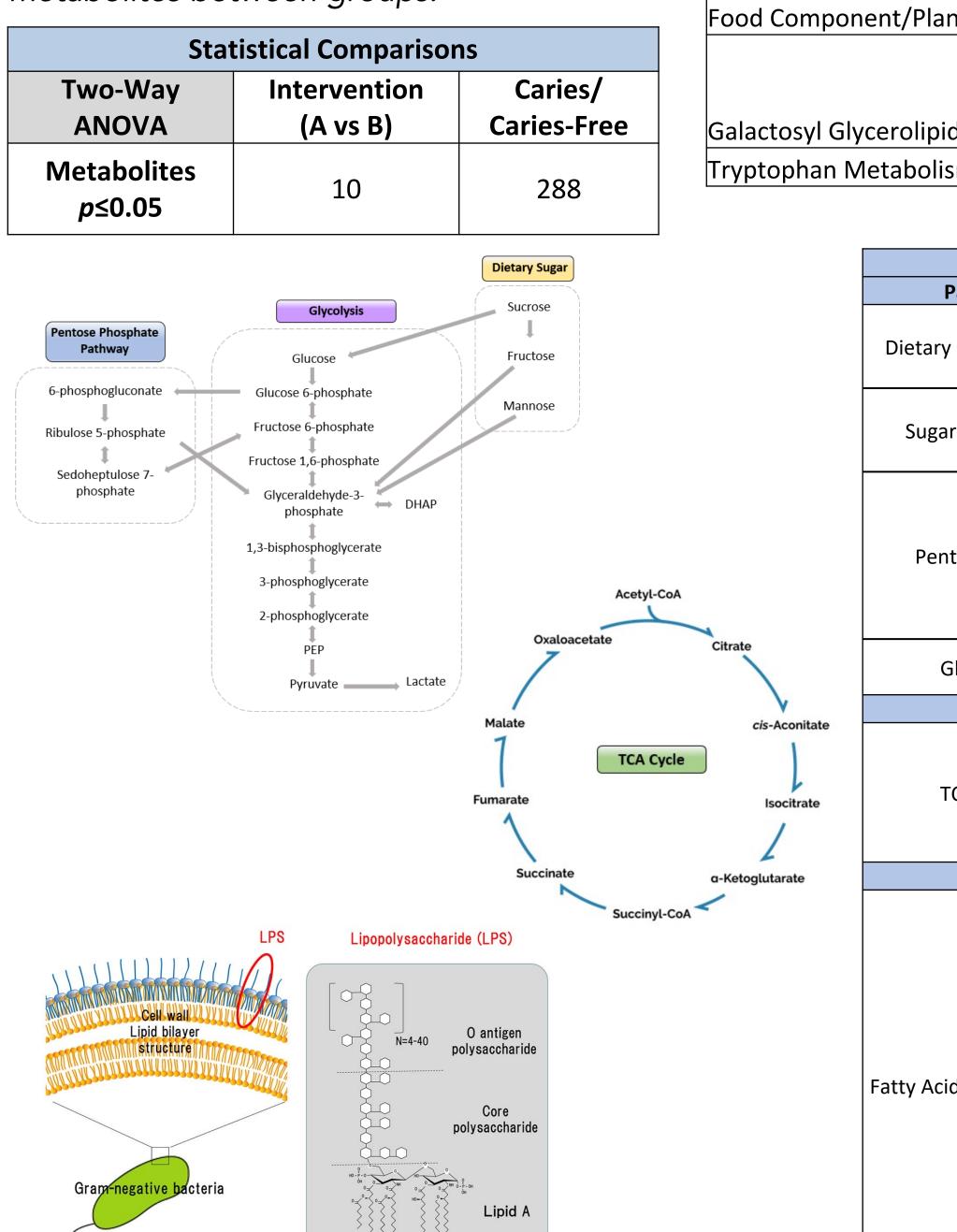


Figure 1: Targeted Metabolomic analysis of carbohydrate metabolism, Tricarboxylic Acid (TCA) cycle, and fatty acid metabolism related to lipopolysaccharide (LPS). The levels of metabolites were compared between caries-affected and caries-free infants. Only statistically significant metabolites are listed. P<0.05. Q-value accounts for the false discovery rate. Fold change indicates the ratio of mean scaled intensity between caries-affect and caries-free infants.

Food Component/Pla

Disaccharides and Oligosaccharides Lysine Metabolism

Pathway

Food Component/Pla

Dipeptide

Results

 Table 3. Untargeted Metabolomics: Top 15 metabolites based on fold changes

between caries-affected and caries-free infant subjects, sorted by type of pathway. P<0.05. Q-values account for the false discovery rate.

		uiscov		•		
				Fold		
	Metabolite	p-value	q-value	Change	Туре	
	Coumaroylquinate (3)	0.04	0.08	80.35	Exogenous	
	Chlorogenate	0.03	0.07	68.50	Exogenous	
	Coumaroylquinate (2)	0.02	0.06	48.38	Exogenous	
lant		0.02	0.00	39.17		
	Coumaroylquinate (1)				Exogenous -	
	Coumaroylquinate (5)	0.03	0.07	22.89		
	Coumaroylquinate (4)	0.02	0.05	22.13	Exogenous	
	Maltitol/lactitol/cellobiotol					
	/palatinol	0.01	0.04	9.98	Exogenous	
	Pipecolate	0.00	0.03	9.40	Exogenous	
	Quinate	0.01	0.04	8.24	Exogenous	
lant	Acesulfame	0.03	0.07	7.03	Exogenous	
	Fucitol	0.01	0.04	6.62	Exogenous	
	Cyclo(leu-pro)	0.00	0.03	6.37	Endogenous	
lant	Gluconate	0.00	0.03	5.53	Exogenous	
	1-linoleoyl-					
	digalactosylglycerol (18:2)*	0.00	0.03	5.43	Exogenous	
•						
olism	Kynurenate	0.01	0.04	5.29	Exogenous	
			2W ANOVA Main Effects (based on caries)			
	Carbohydrate N	/letabolism		carresy		
Pathway	Biochemical Name		p-value	q-value	Fold Change	
	Glucose		0.0096	0.041	3	
ary Sugar Sources	Fructose		0.0045	0.036	3.4	
	Mannose		0.032	0.076	3.4	
	Arabitol/xylitol		0.0004	0.035	3.9	
gar Substitutes	Maltitol/lactitol/cellobiotol/pal	0.0083	0.04	10		
Mannitol/sorbitol 0.000			0.0003	0.035	4.1	
	Ribitol		0.0011	0.035	3.1	
Ribonate			0.0013	0.035	3.1	
entose Sugars	Ribulose/xylulose	ose/xylulose 0.0049 0.036 2.9				
entose Sugars	Xylose	0.0074	0.04	2.8		
	Arabonate/xylonate	0.0037	0.035	2.7		
	Sedoheptulose				3	
Glycolysis	Glucose 6-phosphate		0.023	0.063	1.9	
	Lactate		0.0078	0.04	1.8	
	TCA Cv	cle				

	Glucose	0.0096	0.041	3
ry Sugar Sources	Fructose	0.0045	0.036	3.4
	Mannose	0.032	0.076	3.4
	Arabitol/xylitol	0.0004	0.035	3.9
ar Substitutes ntose Sugars Glycolysis TCA Cycle	Maltitol/lactitol/cellobiotol/palatinol	0.0083	0.04	10
	Mannitol/sorbitol	0.0003	0.035	4.1
	Ribitol	0.0011	0.035	3.1
	Ribonate	0.0013	0.035	3.1
ntoco Sugara	Ribulose/xylulose	0.0049	0.036	2.9
niose Sugars	Xylose	0.0074	0.04	2.8
	Arabonate/xylonate	0.0037	0.035	2.7
	Sedoheptulose	0.0007	0.035	3
Chucohucic	Glucose 6-phosphate	0.023	0.063	1.9
GIYCOIYSIS	Lactate	0.0078	0.04	1.8
	TCA Cycle			
	Aconitate [cis or trans]	0.02	0.059	1.9
TCA Cycle	Isocitrate	0.048	0.1	2
	Succinate	0.0019	0.035	2.5
	Fumarate	0.0009	0.035	3
	Malate	0.0005	0.035	4.2
	Fatty acid metabolism related to lipopolysa	ccharide (LP	S)	
	2-hydroxyoctanoate	0.0048	0.036	2.5
	2-hydroxydecanoate	0.04	0.09	2.3
	2-hydroxylaurate	0.0079	0.04	2.1
	2-hydroxymyristate	0.0096	0.041	2.2
	2-hydroxypalmitate	0.0076	0.04	2.2
cid, Monohydroxy	2-hydroxystearate	0.011	0.044	2.4
	3-hydroxyhexanoate	0.018	0.056	2.3
	3-hydroxyoctanoate	0.0058	0.037	2.8
	3-hydroxylaurate	0.0043	0.036	2.4
	3-hydroxymyristate	0.003	0.035	2.6
	3-hydroxypalmitate	0.0028	0.035	2.6
	3-hydroxymargarate	0.0058	0.037	2.3
	3-hydroxystearate	0.0034	0.035	2.7
	13-HODE + 9-HODE	0.0037	0.035	2.1

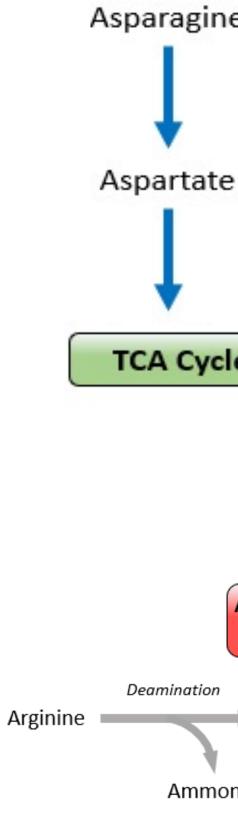


Figure 2: Targeted Metabolomic analysis of significant amino acid metabolism and arginine deiminase system. The levels of metabolites were compared between caries-affected and caries-free infants. Only statistically significant metabolites are listed. P<0.05. Q-value gives the false discovery rate. Fold change indicates the ratio of mean scaled intensity between caries-affect and caries-free

- Navajo infants. strategies.

	References
1.	Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study. Lancet, vol. 390, no. 10100, pp. 1211–1259. (2016)
2.	Holve S. et al. Early Childhood Caries in Indigenous Communities. Pediatrics.147(6):e2021051481. (2021)
3.	Abanto J. et al. Impact of oral diseases and disorders on oral health-related quality of life of preschool children. Community Dent Oral Epidemiol, vol. 39, no. 2, pp. 105–114. (2011)
4.	Phipps, K., and Ricks, TL. The oral health of American Indian and Alaska Native children aged 1-5 years: results of the 2014 IHS oral Health survey. Indian Health Service data brief.
	Rockville, MD: Indian Health Service. (2015)
5.	Water poverty on U.S. soil: why the Navajo Nation water crisis should shame us all. < https://tataandhoward.com/2015/08/water-poverty-on-u-s-soil-why-the-navajo-nation-
	watercrisis-should-shame-us-all/> (2015).
6.	Ingalls, A. et al. Family Spirit Nurture (FSN) – a randomized controlled trial to prevent early childhood obesity in American Indian populations: trial rationale and study protocol.
	BMC Obes 6, 18. (2019)
7.	Takahashi, N. Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?". J Dent Res 94, 1628-1637. (2015)
~	

- 8. Indian Health Service. Trends in Indian Health. (2014)

CENTER FOR INDIGENOUS HEALTH

				2W ANOV	A Main Eff caries	ects (based on
		Amino Acid Metabolism				
		Pathway	Biochemical Name	p-value	q-value	Fold Change
2			Alanine	0.0086	0.041	1.9
			N-acetylalanine	0.0012	0.035	2.2
		Alanine and Aspartate Metabolism	Aspartate	0.035	0.081	1.9
			N-acetylaspartate (NAA)	0.0003	0.035	2.3
			Asparagine	0.0018	0.035	4.2
			N-acetylasparagine	0.0029	0.035	2.8
		Glutamate Metabolism	Alpha-ketoglutaramate*	0.0018	0.035	2.2
			N-acetylglutamate	0.028	0.071	1.3
			N6-acetyllysine	0.033	0.078	2.4
			N6,N6,N6-trimethyllysine	0.038	0.085	3.2
			2-aminoadipate	0.021	0.061	2.2
• • • •	Glutamate	Lysine Metabolism	Pipecolate	0.0018	0.035	9.3
			6-oxopiperidine-2-Carboxylate	0.013	0.047	2.6
			N,N-dimethyl-5-Aminovalerate	0.0036	0.035	3.2
			4-methyl-2-oxopentanoate	0.013	0.048	1.9
			Isovalerate (i5:0)	0.019	0.057	1.8
			Isovalerylglycine	0.0072	0.04	3.1
			Beta-hydroxyisovalerate	0.019	0.057	1.9
			3-methylglutaconate	0.0022	0.035	2.2
		Leucine, Isoleucine and	Isoleucine	0.026	0.068	1.8
		Valine Metabolism	2-methylbutyrylcarnitine (C5)	0.018	0.056	2.5
System			Ethylmalonate	0.015	0.051	2.3
			Methylsuccinate	0.0084	0.04	2.1
Citrulline	Ornithine		N-acetylvaline	0.023	0.064	2.1
Citruinine	Omitime		3-methyl-2-oxobutyrate	0.015	0.052	1.9
	Carbamoyl		Alpha-hydroxyisovalerate	0.0081	0.04	2.1
a 🔶 🚽		Arginine Deiminase System				
	phosphate	Arginine Deiminase System	Arginine	0.026	0.026	3.1
			Citrulline	0.012	0.012	2.8
			N-acetylcitrulline	0.023	0.023	3.8
			N-delta-acetylornithine	0.0037	0.0037	2.6

Conclusions

Statistically significant differences between metabolite levels were based on the caries status, and not by the sugar reduction educational program.

Several novel metabolites were found in significantly higher levels in Navajo infants with caries, which in combination, may serve as ECC biomarkers for this high risk population.

Caries-affected subjects had significantly higher levels of metabolites related to food components, carbohydrate metabolism, fatty acid metabolism, amino acid metabolism, and the arginine deiminase system. These major pathways have been associated with ECC, confirming the differences in caries outcomes of

Additionally, these unique caries-related metabolite signatures can be used in developing ECC risk factors and therapeutic targets for future preventive

Future directions include evaluating the correlation between significant metabolites and caries experience, and between metabolomic and microbiome data.

Deferences