Efficacy and Safety of Intranasal Dexmedetomidine for Pediatric Sedation Dentistry

Jacqueline Yip, DMD,¹ Yanelis Mestre, DMD,¹ John H Unkel, DDS, MD,¹ Elizabeth J Berry DDS, MSD, MPH,¹ Dennis Reinhartz, PhD,² Judy Reinhartz, PhD³ ¹Bon Secours St. Mary's Hospital of Richmond, Richmond, VA, ²The University of Texas at Arlington, Arlington, Texas, ³The University of Texas at El Paso, El Paso, Texas

PURPOSE

The purpose of the study was to compare the safety and efficacy of intranasal dexmedetomidine with oral midazolam and oral midazolam/hydroxyzine as a sedative agent for pediatric dental treatment.

BACKGROUND

- Dental fear is a frequent encountered problem among children and adolescents in the dental office.¹
- Moderate sedation provides a safe alternative to general anesthesia and is used routinely to facilitate dental treatment in anxious patients.¹
- The discontinuation of the commercial production of chloral hydrate and the increased avoidance of opioids has left a void in dental sedation protocols.
- Dexmedetomidine is a selective alpha-2 agonist that provides sedation, anxiolysis, and mild analgesia without suppressing respiratory drive or compromising airway integrity.²
- Dexmedetomidine has been successfully used for pediatric procedural imaging sedation as well as a premedication before general anesthesia.³⁻⁵
- Retrospective studies demonstrate that intranasal dexmedetomidine is safe and effective when combined with nitrous oxide for moderate pediatric dental sedation.^{6,7}

REFERENCES

- Cianetti S, Lombardo G, Lupatelli E, et al. Dental fear/anxiety among children and adolescents. A systematic review. Eur J Paediatr Dent. 2017; 18 (2): 121-30.
- Mason KP, Lerman J. Review article: Dexmedetomidine in children: current knowledge and future applications. Anesth Analg. 2011;113(5):1129-42.
- Mason KP, Zurakowski D, Zglesweski SE. High dose dexmedetomidine as the sole sedative for pediatric MRI. Pediatric Anaesth. 2008; 18(5): 403-11.
- Mason KP., Robinson F., Fontaine P., Rescilla R. Dexmedetomidine offers an option for safe and effective sedation for nuclear medicine imaging in children. *Radiology*. 2013; 267(3): 911-17.
- Mekitarian Filho E, Robinson F, Brunow de Carvalho W, Gilio A, Mason K. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging. *The Journal of pediatrics*. 2015; 166(5): 1313-15.
- Unkel JH, Cruise C, Rice A et al. A retrospective evaluation of the safety profile of dexmedetomidine and nitrous oxide for pediatric dental sedation. *Pediatr Dent* 2021;42(2):129-3.
- Unkel JH, Berry EJ, Ko BL, et al. Effectiveness of intranasal dexmedetomidine with nitrous oxide compared to other pediatric dental sedation drug regimens. *Pediatr Dent* 2021; 43(6): 457-62.

METHODS

- A prospective multi-site randomized control study.
- Inclusion criteria: 3-6 years old, ASA I or II, and English speaking.
- Patients were randomized and received one of the following medication regimen:
 - 3 μg/kg intranasal dexmedetomidine^a (DEX).
 - 0.7 mg/kg oral midazolam^a (MID).
 - 1 mg/kg oral hydroxyzine^a with 0.7 mg/kg oral midazolam (MIDHYD).
- All patients received ≥65% nitrous oxide/oxygen at a calculated flow rate during treatment.
- Demographic data, procedural times, minor and major adverse events, and quality of sedation were identified and recorded.
- Efficacy of sedation was determined by utilizing a scale modified from the American Academy of Pediatric Dentistry (AAPD) (Figure 1).
- Sedation was considered effective if the treatment was completed and had a behavior score of 0 to 2. A score of 3 or 4 in either category was graded as ineffective.

 a maximum dose for intranasal dexmedetomidine is 100 μg , for oral hydroxyzine is 25 mg, and for oral midazolam is 20 mg.

DATA ANALYSIS

Kruskal-Wallis tests for continuous variables and Fisher's exact tests for categorical variables were used to analyze the data.

Sedation Score			
0	None (typical response/cooperative for this patient)		
1	Mild (anxiolysis), tired, verbally responsive		
2	Moderate (purposeful response to verbal commands light tactile sensation), somnolent		
3	Deep (purposeful response after repeated verbal or painful physical stimulation), deep sleep		
4	General anesthesia (unarousable)		
Behavior Score			
0	Excellent (quiet and cooperative)		
1	Good (mild objections and/or whimpering but treatment not interrupted)		
2	Fair (crying with minimal disruption to treatment)		
3	Poor (struggling that interfered with operative procedures)		

4 Prohibitive (active resistant and crying, treatment cannot be rendered)

Figure 1: Modified AAPD Score

RESULTS

- Seventeen children were included into this study. The sedation modality groups, demographic distribution, and treatment completion rates are shown in Tables 1 and 2.
- The sedation level for the DEX group was consistent with the other sedation modalities.
- There were no major adverse events for any group.
- There were significant differences in mean systolic blood pressure (SBP) (p=0.012), minimum overall SBP (p=0.044), mean recovery SBP (p=0.003), minimum recovery SBP (p=0.022), and mean recovery HR (p=0.030) across the three groups.
- Specifically, patients receiving DEX had a significantly lower SBP and recovery HR as compared with the other two groups.
- No statistically significant differences were observed for treatment effectiveness (p>.999).

Males	70.6%	Table 1: Patien
Females	29.4%	Demographics
Black	64.7%	
White	17.6%	
Middle Eastern	11.8%	
Asian	5.9%	

Medication	Distribution	Treatment Completed
MID	41.2%	66.7%
DEX	23.5%	75.0%
MID/HYD	35.3%	71.4%

 Table 2: Sedation Modality Distribution & Treatment Completed

CONCLUSIONS

- Dexmedetomidine is an effective and safe medication for pediatric sedation for dentistry.
- Dexmedetomidine provides adequate sedation effects compared to oral midazolam and oral midazolam combined with hydroxyzine.
- Limitations include small sample size and on-going study.

