

Westberg ME^{1*}, Scully AC¹, Gregory R², Jones JE¹, Yepes JF¹, Eckert G³ (Indiana University School of Dentistry/Riley Hospital for Children¹; Indiana University School of Dentistry²; Indiana University School of Medicine³)

BACKGROUND & PURPOSE

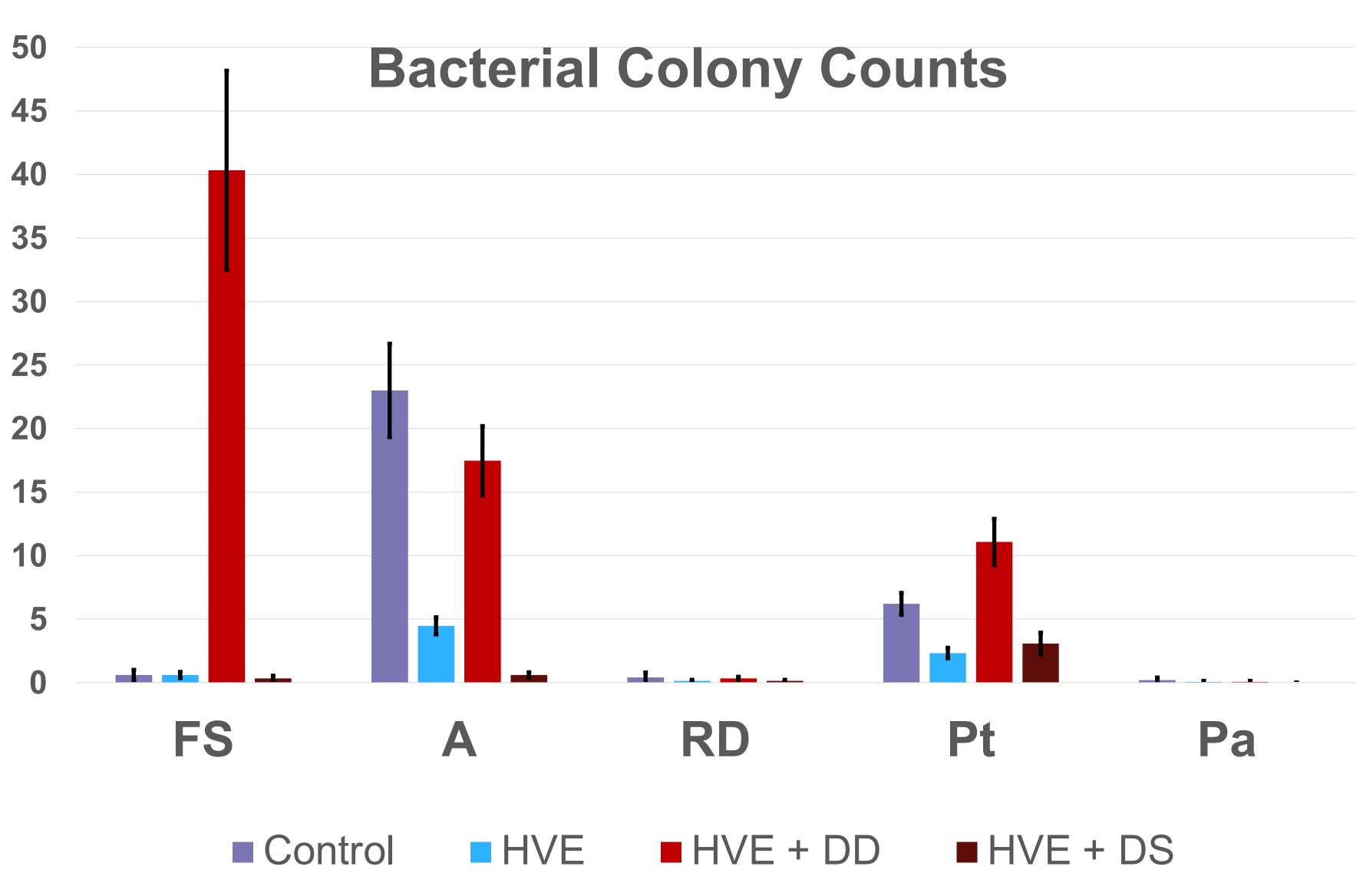
- Limiting bioaerosols is an important goal of infection control in pediatric dentistry
 - Many human diseases are known to be caused by bioaerosols • Influenza, severe acute respiratory syndrome (SARS), tuberculosis, and many others [1, 2]
- Bacterial cells are ≈1 µm in diameter and well-retained in the <u>lungs</u> _[2,3]
- <u>Aerosolized particles <5 µm in diameter settle less rapidly and</u> disperse furthest through the air [4]
- Dental isolation systems (Dryshield® [DS], Isolite®) are gaining popularity over traditional dental dams [DD]
 - Limited evidence supports their efficacy at eliminating bioaerosols [5, 6]
- The purpose of this study is to:
- Investigate bacterial spread via aerosols produced by single stainless-steel crown (SSC) preparations
- Compare the effectiveness of different isolation methods at eliminating bioaerosols

METHODS

- Melamine pediatric typodont teeth were incubated in tryptic soy broth containing 1% sucrose inoculated with s. mutans
- Teeth were prepared for SSCs using 3 different isolation methods:
- High-volume evacuation suction [HVE] only,
- HVE with a dental dam [HVE + DD]
- HVE with a Dryshield® [HVE + DS]
- Blood agar plates placed in 5 locations in closed-room operatory:
- Operator faceshield [FS] • Rear delivery [RD]
- Dental assistant [A]
- Parent [Pa]

- Patient [Pt]
- Plates collected aerosolized bacteria during each preparation Left open for 10 minutes following each preparation
- Bacterial colonies were counted after incubating each plate for 48 hours at 37°C in 95% air and 5% CO₂
- Effects of isolation method and location on bacteria colony counts were analyzed using generalized estimating equation methods applied to negative binomial regression for count data

ADDITIONAL PHOTOS


Aerosolization of S. mutans From Stainless Steel Crown Preparations

REFERENCES

- Bacterial colony counts:
- shield [FS] and patient [Pt] • All p<0.003
- HVE+DD: **FS > A > Pt > RD = Pa**

- procedure (FS, A, Pt)
- equal to all other methods at Pt and FS
- their spread

RESULTS

HVE+DD > HVE+DS and HVE only at assistant [A], operator face

• <u>HVE+DS isolation</u>: **Pt > A, FS, RD, and Pa** • No differences between Parent [Pa] or Rear Delivery [RD]

Figure 1: Mean bacterial colony counts with Standard Error

CONCLUSIONS

• HVE+DD was least effective at mitigating bioaerosols near the

• Similar to studies from Ahmed et al. $_{[4]}$ and Bentley et al. $_{[7]}$ HVE+DS was superior at mitigating bioaerosols than HVE only at A but

Plates at the RD and Pa locations rarely yielded bacterial colonies • DD use increases bioaerosols while DS use may effectively limit

IUPU INDIANA UNIVERSITY School of Dentistry

