Silver Diamine Fluoride Differentially Affects Dentin and Hypomineralized Enamel Permeabilities

Conrad Chou¹, Misun Kang², Rosalyn Sulyanto³, Dilworth Y. Parkinson⁴, Sunita P. Ho²

¹Division of Pediatric Dentistry, Department of Orofacial Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA, 94143, USA; ²Department of Preventive A, 94143, USA; ²Department of Francisco, CA, 94143, USA; ³Department of Dentistry, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA; ⁴Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Introduction

- Permeability (the ability of a material to transmit fluids) of enamel and dentir relates to the 1) progression of caries, 2) hypersensitivity, and 3) outcome of treatment including the use of silver diamine fluoride (SDF).¹
- In patients with molar-incisor hypomineralization, the severity of hypersensitivity varies but is frequently associated with the severity of hypomineralization (H).²
- Purpose: To investigate the effect of SDF on the physiochemical properties of hypomineralized enamel and carious dentin.

Method

Enamel and dentin from extracted carious primary teeth with(N=3;41 regions) and without(N=3;35 regions) SDF treatment *in-vivo*, and hypomineralized enamel from permanent molars with(N=3;41 regions) and without(N=7;43 regions) SDF treatment *in-vitro*

Specimens were scanned using high esolution (65µm) X-ra micro computed tomography (microCT) maps of Zn²⁺ and Ca²⁺ were enerated using > ray fluorescence microprobe

Physicochemical properties were computed and analyzed using Porous Microstructure Analysis, BoneJ, and RStudio software.

Results

Figure 1: Sample processing and microCT. A1,B1: Photos of a carious primary tooth treated with SDF in-vivo, and permanent molar with severe hypomineralization without SDF A2,B2: Light microscope image of specimen showing changes in the color and texture of tissues. A3,B3: Tomographs from microCT revealing three dentin zones: carious, transparent, and sound dentin of varying mineral density, diameter, tubule occlusions, and silver particles. Hypomineralized enamel showed widened enamel sheaths between the rods.

Figure 2: Mineral density (MD) and elemental composition maps. Heightened Zn level is found in pathologic enamel and dentin. A1: Calibrated MD (white) map from microCT in a carious primary tooth treated with SDF. A2-3: Elemental maps of Ca (red), P (pink), and Zn (green) in overlay, and Ag (blue) of the same specimen. B1: Elemental map of Ca (red), P (pink), and Zn (green) of a specimen with severe enamel hypomineralization.

E2 XCT E3

enamel exhibited gapping between enamel rods forming spaces for fluid flow. Mild hypomineralized enamel displayed reduced spacing between enamel rods, leading to minimal permeability.

Carious Transparent Sound H Enamel H Dentin Figure 5: Permeability and associated physical and chemical properties. Permeability of SDF-treated carious dentin (P<.0001), but not transparent dentin (P=0.9293), was significantly lower than those untreated. Permeability of severely hypomineralized enamel was comparable to sound dentin (P=0.2043), and was significantly higher than mildly hypomineralized enamel (P<.0001).

Reference

1. Pashley, David H et al. "The effects of dentin permeability on restorative dentistry." Dental clinics of North America vol. 46,2 (2002): 211-45, v-vi. doi:10.1016/s0011-8532(01)00009-x 2. Linner, Thomas et al. "Hypersensitivity in teeth affected by molar-incisor hypomineralization (MIH)." Scientific

reports vol. 11,1 17922. 9 Sep. 2021, doi:10.1038/s41598-021-95875-x

3. Vianna, Rafael S., Alexsander M. Cunha, Rodrigo B. V. Azeredo, Ricardo Leiderman, and Andre Pereira. 2020. "Computing Effective Permeability of Porous Media with FEM and Micro-CT: An Educational Approach" Fluids 5, no. 1: 16. https://doi.org/10.3390/fluids5010016

eral	Ca	Р	Zn
sity	Level	Level	Level
)5	0.63	0.59	0.09
)	0.05	0.17	0.79

