

Effect of Novel Amelotin-Coated Hydroxyapatite Nanoparticles on the Remineralization of Artificial Carious Lesions *in vitro* O'Hagan-Wong K.¹, Enax, J.², Meyer F.², & Ganss B¹

Faculty of Dentistry, University of Toronto¹ Department Oral Care Dr. Kurt Wolff GmbH & Co. KG, Germany²

Introduction

Hydroxyapatite Toothpaste

- Hydroxyapatite toothpaste (HAP-TP) was approved for use in Canada in 2015¹
- The main ingredient in HAP-TP is calcium and phosphate in the form of HAP
- HAP -TP are currently being explored as a fluoride free anti-caries agent
- Clinical trials have demonstrated the noninferiority of HAP toothpaste compared to fluoride toothpaste as an anti caries agent²

Comparison of fluoride and HAP-TP³

	Hydroxyapatite Toothpaste	Fluoride Toothpaste
Mechanism of Action	Deposition of HAP particles on demineralized enamel	Improvement of the natural tooth surface remineralization process
Source of Ca ²⁺ and PO ₄ ²⁻	Does not rely on calcium and phosphate in saliva	Relies on salivary flow for calcium and phosphate ions
Adverse Effects	No adverse heath events reported	Dental fluorosis, systemic toxicity when used in excess
Whitening	HAP gel found to produce increased brightening effects <i>in</i> <i>vitro</i> and i <i>n vivo</i>	No significant difference in tooth shade score from baseline
Sensitivity	Decreased dentinal hypersensitivity and increased tubule occlusion	No significant difference between fluoridated toothpaste and placebo

Amelotin

- Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation ⁴
- In vivo studies demonstrate AMTN knockout mice display hypomineralized enamel⁵
- *In vitro* studies have demonstrated that AMTN coated hydroxyapatite nanoparticles (AMTN-HAP) promote significantly more mineralization on demineralized dentin disks and collagen gels⁶
- AMTN may be a novel strategy to promote enamel mineralization

Objectives

- To develop a protocol to create artificial white spot lesions (WSL) in vitro
- 2. To investigate the effect of AMTN-HAP on the remineralization of artificial WSL in vitro

Materials & Methods

- Extracted human third molars were painted with 2 coats of nail varnish except for a 2x3mm window on each surface (n=6)
- Teeth were demineralized in a lactic acid buffer for 7 days (pH=4.5) at 37C to create WSL on each surface of the tooth ⁷
- Human recombinant AMTN was expressed in *E.Coli* and purified as described ⁶
- AMTN was mixed with a 1% solution HAP nanoparticles ⁶
- WSL were incubated with 1- recombinant AMTN, 2- HAP nanoparticles, or AMTN-HAP or artificial saliva for 2 hours at 37C
- Mineral density and lesion depth were measured using micro computer tomography (µCT)
- Unpaired non-parametric t test

Results

Demineralization at 7 days and 37C produced a noncavitated WSL

Figure 1 Photo of WSL produced after demineralization at different timepoints and temperatures. Demineralization of 7 days at 37 C was chosen for all subsequent experiments as it produced a non-cavitated enamel lesion (red box). Surface cavitations can be seen at 14 days (red arrow)

Results

The artificial WSL produced had an average mineral density of 1.57 ± 0.21 g/cm3 and lesion depth of 167 ±0.03um as measured by µct

Figure 2 Characterization of artificial WSL by µCT A. µCT slice B. Plot of mineral density of WSL and distance from enamel surface **C**. Variability in lesion depth in different teeth **D**. Demineralization of different surfaces on one tooth produced a uniform WSL

Naturally occurring WSL have a thicker surface layer and appear more diffuse compared to artificial WSL

Figure 3 Characterization of naturally occurring WSL A. Clinical photo and **B**. µct slice of interproximal WSL

Figure 4 Treatment of artificial WSL with AMTN-HAP A. µCT slice of control and AMTN-HAP treated artificial WSL B. Increased mineral density and C. Decreased lesion depth by µCT of AMTN-HAP group compared to untreated group

Our early research suggests that AMTN-HAP are effective at remineralizing artificial WSL

Results

Treatment of artificial WSL with AMTN-HAP resulted in a significant increase in mineral density and decrease in lesion depth by µct compared to control

Conclusion

References

AMAECHI, B. T.; ABDULAZEES, P. A.; ALSHAREIF, D. O.; SHEHATA, M. A. et al. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open, 5, n. 1, p. 18, 2019/12/09 2019. 2. LIMEBACK, H., ENAX, J. & MYER, F. Biomimetic hydroxyapatite and caries privation: a systematic review and meta-analysis. Can. J. Dent. Hyg., 55, p. 148-159, 2021.

O'HAGAN-WONG, K.; ENAX, J.; MEYER, F.; GANSS, B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology 110, n. 2, p. 223-230, Apr 2022. ABBARIN, N.; SAN MIGUEL, S.; HOLCROFT, J.; IWASAKI, K. et al. The enamel protein amelotin is a promoter of hydroxyapatite

mineralization. J Bone Miner Res, 30, n. 5, p. 775-785, May 2015. NÚÑEZ, S. M.; CHUN, Y. P.; GANSS, B.; HU, Y. et al. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol, 52-54, p. 219-233, May-Jul 2016.

NESHATIAN, M.; HOLCROFT, J.; KISHEN, A.; DE SOUZA, G. et al. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes. Mater Today Bio, 14, p. 100255, Mar 2022.

MORON, B. M.; COMAR, L. P.; WIEGAND, A.; BUCHALLA, W. et al. Different protocols to produce artificial dentine carious lesions in vitro and in situ: hardness and mineral content correlation. Caries Res, 47, n. 2, p. 162-170, 2013.

Acknowledgements

OGS Scholarship, Canadian Pediatric Society Oral Health Research Grant, Ontario Society of Preventive Dentistry- Public Heath Research Fellowship 2021

DR·WOLFF·GROUP