A Pilot Randomized Clinical Trial on The Use of a Novel Polylactic Acid Dermal Matrix for Diabetic Foot Ulcer Closure

Brock Liden, DPM ¹, Christian Planck, MBA ², Max Froelich, MD, PhD ², Darren Doerr, MBA ², Jose L. Ramirez-Garcialuna, MD, PhD ^{2,3}

¹ WAFL, Circleville, OH. ² PolyMedics Innovations, Woodstock, GA. ³ McGill University, Montreal, QC, Canada

The Wound Healing Company

Background

Objective:

• To compare the performance of a **poly-lactic acid (PLA)** guided closure matrix vs. a collagen dressing to achieve 100% closure of diabetic foot ulcers.

Background:

- Foot ulcers affect up to 35% of people with diabetes and represent a challenge for closure.
- Guided closure matrices are often required to accelerate the healing process.
- We recently developed a novel closure matrix made of PLA.
- PLA has demonstrated excellent closure outcomes for patients with acute wounds such as burns.
- The **lactate** released by the PLA matrix acts as a paracrine agent (lactormone) with potent signaling effects that include:
- Hypoxia mimicking and triggering of neo-angiogenesis
- Cell survival and proliferation
- Anti-inflammation
- In addition, the lactate causes acidification of the wound bed and a **pH shift** to neutral values.

Methods

- Patients with diabetes mellitus and a single foot ulcer of at least 3 months of evolution were included in the trial.
- Exclusion criteria were presence of active infection, uncontrolled diabetes mellitus or any other uncontrolled comorbidity, and use of drugs or medications that would affect wound healing.
- Patients were **randomized** to receive either the weekly applications of a PLA matrix or collagen dressings as adjuncts to the standard of care.
- All patients were enrolled in a single high-volume center and were treated by the same surgeon.
- The **primary objectives** of the trial was the number of weeks required to attain full closure of the wound.
- The **secondary objectives** included the odds of attaining closure by 12-weeks and the presence of complications, including infection, amputation, or treatment failure.
- Analysis of the data was performed blindly by an independent researcher.

No significant differences between patient groups were found at baseline:

	Collagen (N=10)	PLA (N=10)	Total (N=20)	p-value
Age (years)				0.9721
Mean (SD)	63.800 (14.513)	64.000 (10.488)	63.900 (12.324)	
Range	41.000 - 88.000	49.000 - 78.000	41.000 - 88.000	
Gender				0.653 ²
Female	5 (50.0%)	4 (40.0%)	9 (45.0%)	
Male	5 (50.0%)	6 (60.0%)	11 (55.0%)	
ВМІ				0.675 ¹
Mean (SD)	31.800 (8.904)	30.500 (3.719)	31.150 (6.675)	
Range	23.000 - 55.000	27.000 - 36.000	23.000 - 55.000	
Use of tobacco				0.639^2
No	7 (70.0%)	6 (60.0%)	13 (65.0%)	
Yes	3 (30.0%)	4 (40.0%)	7 (35.0%)	
HbA1c (%)				0.200^{1}
Mean (SD)	7.570 (0.886)	8.190 (1.179)	7.880 (1.064)	
Range	6.400 - 9.100	6.600 - 10.000	6.400 - 10.000	
Creatinine (mg/dL)				0.271 ¹
Mean (SD)	1.201 (0.589)	1.312 (0.486)	1.265 (0.579)	
Range	0.900 - 2.170	0.814 - 2.310	0.814 - 2.310	
ABI				0.417 ¹
Mean (SD)	1.049 (0.116)	0.994 (0.174)	1.022 (0.147)	
Range	0.840 - 1.210	0.740 - 1.290	0.740 - 1.290	
				1. Linear Model ANO

• No significant differences between wound characteristics were found at baseline:

		Collagen (N=10)	PLA (N=10)	iotai (N=20)	p-value
U	llcer age (weeks)				0.6361
	Mean (SD)	15.400 (3.748)	16.800 (8.390)	16.100 (6.365)	
	Range	12.000 - 24.000	10.000 - 38.000	10.000 - 38.000	
U	llcer site				0.287^2
	Dorsum	4 (40.0%)	4 (40.0%)	8 (40.0%)	
	Heel	1 (10.0%)	0 (0.0%)	1 (5.0%)	
	Metatarsal	2 (20.0%)	2 (20.0%)	4 (20.0%)	
	Plantar	3 (30.0%)	4 (40.0%)	7 (35.0%)	
G	Granulation tissue area (%)				0.108 ¹
	Mean (SD)	44.000 (25.906)	62.000 (21.499)	53.000 (24.942)	
	Range	10.000 - 80.000	10.000 - 80.000	10.000 - 80.000	
N	Ion-viable tissue area (%)				0.108 ¹
	Mean (SD)	56.000 (25.906)	38.000 (21.499)	47.000 (24.942)	
	Range	20.000 - 90.000	20.000 - 90.000	20.000 - 90.000	
D	Pepth (cm)				0.3441
	Mean (SD)	0.338 (0.239)	0.473 (0.369)	0.406 (0.310)	
	Range	0.100 - 0.800	0.100 - 1.200	0.100 - 1.200	
A	Area (cm ²)				0.120 ¹
	Mean (SD)	4.066 (2.186)	6.414 (3.984)	5.240 (3.352)	
	Range	1.700 - 7.390	2.090 - 12.300	1.700 - 12.300	
					 Linear Model ANOVA Pearson's Chi-squared test

Results

2. Pearson's Chi-squared test

The cumulative incidence for achieving full closure by 12 weeks with PLA matrices was 90%. Compared to collagen, the OR of achieving full closure by 12 weeks was 2.23 (95%Cl 1.37 to 4.54, p = 0.004).

No complications or adverse events were recorded during the trial.

Discussion

- PLA matrices are more effective than active collagen dressings in promoting diabetic wound closure.
- Its use reduces the time required to achieve full closure and increases the odds of achieving closure by 12-weeks.
- Proposed **reasons** for this include controlled pore sizes that promote cell attachment, migration, and vascularization of the scaffolds; changes toward a neutral wound pH that may inhibit bacterial growth and promote cellular recruitment; and improved cellular signalling to promote neo-vascularization of the wound.

In summary, compared to standard of care, the use of a PLA guided closure matrix was more effective to promote closure of diabetic foot ulcers. Specifically, its use led to significant increases in granulation tissue and a reduction of 45% in the time required to achieve full closure of the wound.

References

- 1. Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. Journal of Clinical Orthopaedics and Trauma. 2021 Jun 1;17:88–93.

 2. Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J. 2022 Nov;19(7):1934–54.
- 3. Hundeshagen G, Collins VN, Wurzer P, Sherman W, Voigt CD, Cambiaso-Daniel J, et al. A Prospective, Randomized, Controlled Trial Comparing the Outpatient Treatment of Pediatric and Adult Partial-Thickness Burns with Suprathel or Mepilex Ag. J Burn Care Res. 2018 Feb 20;39(2):261–7.
- 4. Blome-Eberwein SA, Amani H, Lozano DD, Gogal C, Boorse D, Pagella P. A bio-degradable synthetic membrane to treat superficial and deep second degree burn wounds in adults and children 4 year experience. Burns. 2021 Jun;47(4):838–46.
- 5. Ring A, Goertz O, Al-Benna S, Ottomann C, Langer S, Steinstraesser L, et al. Accelerated angiogenic induction and vascular integration in a novel synthetic scaffolding matrix for tissue replacement. Int J Artif Organs. 2010 Dec;33(12):877–84.