BENEFIT OF LONGITUDINAL MICRO-INCISIONS PRIOR TO PACLITAXEL-COATED BALLOON ANGIOLPLASTY (BELONG Study):12-MONTH RESULTS

Daniel Périard¹, Jean-Baptiste Dexpert¹, Rolf P. Engelberger¹, Daniel Hayoz¹, Eric A. Secemsky²

¹ HFR-Hôpital Cantonal Fribourg, Fribourg, Switzerland; ² Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

PURPOSE

The purpose of this study was to assess the 12-month outcomes of subjects who underwent vessel preparation with FLEX VP prior to paclitaxel-coated DCB (PTx DCB)

FLEX VESSEL PREPTM SYSTEM (FLEX VPTM)

FLEX VP[™] creates longitudinal, controlled-depth micro-incisions that modify the plaque to release the circumferential tension of fibrous and calcific stenoses and provide lumen gain that prepares the vessel for final therapy.

FLEX VP is FDA & CE Mark-cleared for Arterial Venous Fistulas and Arterial Venous Grafts as well as Peripheral Arterial Disease use. Images courtesy of VentureMed Group, Inc

ISR post FLEX Post ELEX+DCE

Optical coherence tomography demonstrating the uniformed, controlled micro-incisions created by the FLEX VP in an animal model of in-stent restenosis

THE BELONG STUDY

Study Design: Single-center, single arm prospective study

Study Population: Patients with symptomatic lower extremity peripheral artery disease and a Rutherford Class of 2-5 with 70% or more de novo, restenotic, or in-stent stenosis of the superficial femoral (SFA) or popliteal (PA) arteries

Study Follow-up: 3- and 12-months post-procedure

Analysis: coreLab Black Forest (GmbH)

RESULTS

Lesion Location Lesion Length Avg. Stenosis Avg. Reside Avg. Reside **Total Occlusio Total Occlusio**

CLINICAL E

Freedom fro **Target Lesion**

Freedom fro Target Lesio

Freedom fro Major Amput

One patient had a non-procedure related death prior to 12 months with no intervention prior to death **Duplex measurement (PSV) in 38 patients; 2 patients follow-up

CONCLUSION

The promising long-term clinical outcomes and considerable Rutherford class improvement at 12-months without complications suggest that vessel-preparation with micro-incisions may enhance DCB therapy in treating long, complex, and calcified lesions.

• Forty-one (41) patients with average age of 70 years (range 43 – 94 years); 46.5% female • 100% procedural success with no perforation, no serious adverse events, and no flowlimiting embolization

sion Location	SFA 86% (37/43) Popliteal 14% (6/43)		
sion Length, mm (range)	117.6 mm (9.8 – 290.7)		
vg. Stenosis, % (range)	81.8% (40-100)		
Avg. Residual Stenosis post FLEX VP, % (range)	62.8% (20.9 - 90.3)		
Avg. Residual Stenosis post DCB, % (range)	33.6% (10.7 - 67.56)		
tal Occlusion, n (%)	28.3%		
tal Occlusion Length, mm, avg. (range)	86 mm (9.6 - 271.6)		
Stent Placement (if residual stenosis > 50%)	41.8 % (18/43) (Stented Lesions with PACSS Score > 3 = 16/18)		

FFICACY	% (number) at 12 months	Rutherford Class	% (number) at Baseline	% (number) at 12 months
m Clinically-Driven	97.5%	0	0	90.2% (37/41)
n Revascularization	(39/40*)	1	0	4.9% (2/41)
	84.2% (32/38**)	2	58.5% (24/41)	4.9% (2/41)
m Pestenosis (DSV/S25)		3	26.8% (11/41)	0
NESIEIIUSIS (PSV>2.5)		4	4.9% (2/41)	0
m	100% (40/40*)	5	9.8% (4/41)	0
tation		ABI	0.71	0.93