

W Samir Cubas MD MSc, Ludwig Cáceres-Farfán MD, Miguel Rojas-Huillca MD, Milagros Moreno-Loaiza MD, Franco Albán MD, Anna Paredes MD, Milagros Salazar-Cuizano MD, Félix Tipacti-Rodríguez MD, Julio Huayllara-Reduzzi MD y Johnny Mayta-Rodríguez MD.

INTRODUCTION

Endovascular Aortic Repair (EVAR) has become the standard management of Unruptured Infrarenal Abdominal Aortic Aneurysm (UIAAA); however, current evidence is limited and uncertain when compared to Open repair. Our study aimed to determine the survival, short and long-term outcomes of EVAR vs. Open in a Peruvian cohort of UIAAA.

OPEN

UIAAA TREATMENT (N=251)

EVAR

METHODS

A single-center observational, analytical, longitudinal study using a retrospective registry of 251 patients treated (EVAR=205 vs. Open=46) for UIAAA during 2000-2017. Variables considered were baseline, comorbidities, clinical-surgical, type of treatment, short-term (<30 days) and long-term (<5 years) outcomes, postoperative mortality according to the Vascular Quality Initiative (VQI) Risk Score, survival curves including reoperation-free rate and according to size (<65 mm vs. >65 mm) of long-term UIAAA. All variables were grouped according to the treatment performed (EVAR vs. Open) and compared with descriptive, multivariate, Cox regression, and Kaplan-Meier survival statistical analyses.

	N=205	N=205 %=81.67 N=46 %=18.33				Table 02. Short- and Long-Tern	n outco	mes of I	UIAAA	v patient	ts treat
Age (Years), Average (IQR) Gender	73 (65.2-77.8)		76 (69.8-79.3)		0.057	open approach and EVAR.					
Male	143	69.75	31	67.39	0.089						
Female	62	30.25	15	32.61			UIA	AA TREAT	MENT (N=251)		
Race	02	00.20	10	52.01		OUTCOMES	0	PEN		VAR	_ <i>p</i>
Mestizo	157	76 58	35	76.08		SHOPT TEDM (~20 Dove)	N=205	%=81.67	N=46	%=18.33	
White	31	15 12	7	15 21	0 167	SHORI-IERMI (<30 Days) Perioperative mortality	6	2 92	0	0	0.030
Black	12	5 85	3	6 52	0.107	Blood transfusion (>4 Units)	189	72.68	8	17 39	0.039
Other	12	2.65	2	0.52		Hospital Stay (Days), Mean (IRO)	14 (1)	1.5-16.2)	5 (3	3.9-8.2)	0.049
$\mathbf{DMI} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$	3	2.45	Z	2.19		ICU stay >48 hours	56	27.31	8	17.39	0.028
$\mathbf{B}\mathbf{W}\mathbf{H} \left(\mathbf{K}\mathbf{g}/\mathbf{m}^{2}\right)$	1.5	7.21	~	10.00	0.046	Complications					
<18.5 (Desnutrition)	15	7.31	5	10.86	0.046	Pneumonia	42	20.48	9	19.56	0.188
\geq 30 (Obesity)	/8	38.04	19	41.30		Reintervention					
Preoperative medication						Postoperative bleeding	13	6.34	1	2.17	
Statins	165	80.48	32	69.56		Aneurysmal rupture	0	0	2	4.34	0.049
Aspirin	149	72.68	29	63.04	0.092	Endoleak	0	0	5	10.86	
Corticosteroids	54	26.34	12	26.08		AMI	14	6.82	2	4.34	0.078
Smoking	138	67.31	14	30.43	0.021	Cardiac arrest	9	4.39	1	2.17	0.190
Family history of AAA	39	19.30	11	23.91	0.032	Acute renal dysfunction	00	42 41	7	15.01	0.020
Previous abdominal surgery	31	15.12	22	47.82	0.004	Increased Cr >2 mg/dl	89	43.41	1	15.21	0.028
Comorbidities	51	10.12	22	17.02	0.004	Hemodialysis	24	2 41	4	8. 69	0.102
Diabetes Mellitus 2	07	17 31	24	52 17		Sol Sentic shock	4	1 95	0	2.17	0.102
Hypertension	97	20.51	15	32.17		Hypovolemic shock	7	3.41	2	4.34	0.134
	01 40	39.31	10	32.00		Ischemic colitis	11	5.36	1	2.17	0.067
Dyslipidemia	49	23.90	18	39.13	0.070	Stroke	12	5.85	3	6.52	0.083
COPD	56	27.31	15	32.60	0.079	Lower limb ischemia	4	1.95	1	2.17	0.205
AMI	34	16.58	11	23.91		Venous thrombosis and pulmonary	14	6.82	4	8.69	0.271
GFR <30 ml/min	29	14.14	10	21.73		Embolism					
Stroke	18	8.78	12	26.08		Urinary tract infection	32	15.60	2	4.34	0.039
Diameter UIAAA (mm)						Postoperative Delirium	15	7.31	3	6.52	0.876
<65 mm	71	34.63	11	23.91	0.021	LONG-TERM (30 DAYS-5 YEARS)					
>65 mm	134	65.37	35	76.09		Late mortality	7	3.41	9	19.56	0.047
Distal aneurysmal extension						Complications	14.0	10.20			
Aortic	96	46.82	24	52.17		UIAAA rupture	0	0	6	13.04	0.032
Common Iliac	72	35.12	18	39.13	0.090	Endoleak					
External and internal iliac	37	18.06	10	87	0.090	IA	0	0	9	19.56	
External and internal inte	2 2 1 0 / (10.00	+ 1 650/ (0.7	0.075	1B	0	0	2	4.34	0.040
Estimated mortality (VQI)	2.21%	1.94-2.89)	1.65%(1.15-1.99)	0.075	llA	0	0	2	4.34	0.048
							0	0	1	2.17	
erquartile Range; BMI= Body Mass Inde	x; AAA= Abdo	ominal Aortic	Aneurysm	n; COPD= Ch	ronic Obstructive	V Deinterrentier	5	2 4 3	1	2.17	0.002
ry Disease; AMI= Acute Myocardial Ir	ntarction; GFI	R= Glomerula	ar Filtratio	on Rate; UIA	AA= Unruptured	Croft and an demostly as in faction	2	2.45	5	10.80	0.002
I Abdominal Aortic Aneurysm; VQI= Vasc	ular Quality I	nitiative.				Strate	2	0.9	2	6 5 2	0.140
						CKD	13	634	5	10.52	0.107
										10.00	0.231

IRQ= Interguarti Pulmonary Dise Infrarenal Abdon

CONCLUSIONS

EVAR has shown better short-term benefit and survival than Open management; however, the latter still prevails in the long-term in our Peruvian UIAAA cohort. Further follow-up studies are required to demonstrate the long-term benefit of EVAR in our population.

Table 01. Baseline and clinical characteristics of the UIAAA study population.

CHARACTERISTICS

JANUARY 16-19, 2023 Loews Miami Beach Miami Beach, Florida

SURVIVAL, SHORT AND LONG-TERM OUTCOMES OF OPEN AND ENDOVASCULAR SURGICAL REPAIR OF UNRUPTURED INFRARENAL ABDOMINAL AORTIC ANEURYSMS.

ted with

IRQ= Interquartile Range; ICU= Intensive Care Unit; AMI= Acute Myocardial Infarction; SSI= Surgical Site Infection; UIAAA= Unruptured Infrarenal Abdominal Aortic Aneurysm; CKD= Chronic Kidney Disease.

RESULTS

The mean age was 74.5 years, and smoking, family members with UIAAA, and previous abdominal surgery were the main antecedents. Diabetes mellitus 2 was the main comorbidity, and more than 50% of patients with UIAAA had diameters greater than 65 mm (p=0.021). The calculated mortality (VQI) was Open=2.21% vs. EVAR=1.65%. In short-term outcomes, mortality (Open=2.92% vs. EVAR=0%; p=0.039), blood transfusion (Open=72.68% vs. EVAR=17.39%; p=0.021) and overall hospital stay (Open=14 vs. EVAR=5 days; p=0.049). A 24% reduction in mortality (HR 0.76, 95% CI, 0.62-0.96, p=0.045) and 19% reduction in readmission for aneurysmal rupture was identified for EVAR (HR 0.81, 95% CI, 0.79-0.85, p=0.031). In long-term outcomes, mortality (Open=3.41% vs. EVAR=19.56%; p=0.047), aneurysmal rupture (Open=0% vs. EVAR 13.04%; p=0.032) and reinterventions (Open=2.43% vs. EVAR=10.86%; p=0.002). An 86% risk of mortality (HR 1.86, 95% CI, 1.32-2.38, p=0.039) and 121% risk of readmission for aneurysmal rupture was identified for EVAR (HR 2.21, 95% CI, 1.98-2.45, p=0.028) (Table 01). At 5 years, survival for Open=93.67% vs. EVAR=80.44% (p=0.043), reintervention free rate for Open=89.26% vs. EVAR=47.82% (p=0.021), survival for treated IUAAA <65 mm for Open=95.77% vs. EVAR=63.63% (p=0.019) and >65 mm for Open=92.53% vs. EVAR=85.71% (p=0.059) (Figure 01-02).

Figure 01. 5-year freedom from reintervention rate of UIAAA treated Open and EVAR according to Kaplan-Meier analysis.

Author Contact: W Samir Cubas MD MSc. Department of Thoracic and Cardiovascular Surgery, Edgardo Rebagliati Martins National Hospital, Lima, Peru. E-mail: wsamircubas@gmail.com