

OAKLAND UNIVERSITY WILLIAM BEAUMONT

Review of The Utility of Drug-Eluting Stents in Peripheral Arterial Disease by Different Vascular Beds

Introduction

Background

Endovascular therapy has recently become the first-line treatment for infrapopliteal occlusive disease; however, there are several endovascular therapy options such as, but not limited to, drug coated balloons (DCB), drugeluting stents (DES), bare metal stents (BMS), and percutaneous transluminal angioplasty (PTA), with the optimal method yet to be determined. Randomized controlled trial (RCT) data in recent years have shown potential in the application of DES that were standardly used for coronary artery disease now for the treatment of peripheral arterial disease (PAD).

Objective

There are few reviews of the utility of DES organized by vascular beds. Herein, we conduct an up-to-date review of literature on the applications of DES in the treatment of PAD in multiple vascular beds, and provide recommendations for further investigations.

Materials and Methods

- A PubMed search was conducted using relevant search terms to identify randomized controlled trials (RCT) that compared drug-eluting stents to other existing peripheral arterial interventions. Retrospective and cohort studies were also included.
- RCTs were identified and classified based on the vascular bed of interest: femoropopliteal, infrapopliteal, renal, extracranial, or intracranial. Case reports, retrospective studies, and cohort studies were also identified and broken down by vascular beds.
- Data from the trials was organized using a table that compared primary/secondary endpoints and outcomes, comorbidities, lesion length, vessel diameter, and length of follow-up period.

Extra/Intra Cranial Arteries

One RCT compares DES with BMS for intracranial atherosclerotic disease (Jie et al. 2022), which shows DESs comparatively reduce the risk of restenosis and stroke recurrence.

Tulasi Talluri, BS¹; Austin Shinagawa, MD²; Geogy Vatakencherry, MD²

¹Oakland University William Beaumont School of Medicine, Rochester, MI; ²Kaiser Permanente, Los Angeles, CA

Results

Renal Arteries

The GREAT Trial by Zähringer et al 2007 is the only RCT known to date that compares a sirolimus DES with BMS for the treatment of atherosclerotic renal artery stenosis (RAS). The investigators reported that the DES arm had an absolute reduction in the 6-month angiographic binary restenosis rate, however the small sample size (n=53) prevented the detection of a statistical significance between the two arms. They ultimately concluded that DES may be beneficial for patients with small renal arteries and impaired renal function.

Femoropopliteal Arteries

				Primary
	DES model,			Outcome (DES
Trial	Formulation, n	Control, n	Primary Endpoint	vs Control)
			In-stent mean	
SIROCCO I			percent diameter	22.6% vs 30.9%;
& II 2005	SMART, sirolimus, 29	BMS, 28	stenosis	(p=0.294)
				14% (95%
			6-month in-stent	confidence
STRIDES	Dynalink, everolimus,		binary restenosis	interval, 7.8%-
2011	104	N/A	rate	22.2%).
ZILVER PTX	Polymer free Paclitaxel,		12-month event	90.4% vs 82.6%;
2011	236	PTA (238)	free survival	P=0.004
IMPERIAL	Eluvia, polymer coated,	Zilver-PTX, polymer	12-month primary	86.8% vs 81.5%;
2018	paclitaxel, 309	free, paclitaxel, 156	vessel patency	(p<0.0001)

Infrapopliteal Arteries

				Primary
	DES model,			Outcome (DES
Trial	Formulation, n	Control, n	Primary Endpoint	vs Control)
DESTINY		Multi-Link Vision BMS,	12-month primary	85% vs 54%
2012	Xience V, everolimus, 74	66	vessel patency	(p=0.0001)
			12-month in-	
ACHILLES	Cypher Select, sirolimus,		segment binary	22.4% vs 41.9%
2012	99	PTA, 101	restenosis	(p=0.019)
YUKON-BTK		Placebo coated BMS,		65.8% vs 44.6%
2012	Polymer free SES, 82	79	Event free survival	(p = 0.02)
PADI			6-month primary	48.0% vs 35.1%
2016	TAXUS, Paclitaxel, 73	PTA-BMS, 64	binary patency	(p=0.096)
SAVAL			12-month primary	
2019	Saval, paclitaxel, 130	PTA, 71	vessel patency	68% vs 71%

Email: ttalluri@oakland.edu Twitter: @ttalluri99

Conclusions & Recommendations

• DES are demonstrated by RCTs to be a safe and effective treatment option for patients with PAD of the femoropopliteal or infrapopliteal regions as compared to bare metal stents (BMS), percutaneous transluminal angioplasty (PTA) and drug-coated balloons (DCB). Although there have been many studies comparing DES to BMS, PTA, or DCB, there are few head-to-head comparisons of DES. Additionally, although DES have become a mainstay in treatment of infrapopliteal occlusive disease, studies on the use of DES for superficial femoral, renal, supra-aortic, extracranial, and intracranial arterial disease are sparse.

• Our recommendations are as follows:

- DES RCT data for the infrapopliteal vascular bed is encouraging, with 4 out of 5 trials noted in this analysis showing superior outcomes for DES as compared to PTA and BMS; however, more RCTs need to be conducted to further determine the safety and efficacy of DES for various lesion lengths and vessel diameters.
- Head-to-head DES comparison studies with large sample sizes and longer follow-up are recommended to determine the optimal dosing and formulation of DES as well as elucidate the longterm efficacy of DESs.
- Although there are a few retrospective studies and case studies on the use of DESs in renal and supraaortic vasculature, further retrospective studies are recommended to elucidate the optimal type of stent to be used In these vascular beds. DES in intracranial and extracranial vasculature is not recommended at this time due to the lack of evidence.

Contact Information