Revenge of the Hay-Hole: Effects of Distribution of Hay-Hole Covers

Katherine Moore, BA, Jalen Landis, Nathaniel Harshaw, BS, Lindsey L. Perea DO, FACS

Penn Medicine Lancaster General Health

Trauma and Acute Care Surgery

BACKGROUND

- Many Pennsylvania barns have openings in the second floor used to drop feed to ground level
- Our previous study led to the creation of the Anabaptist Youth Trauma Prevention Consortium with subsequent distribution of 231 hayhole covers throughout 8 counties in South Central, Pennsylvania
- We conducted a follow-up analysis to determine the effect of hay hole cover distribution and incidence of hay hole falls resulting in traumatic injuries
- We hypothesized that there would be a decreased incidence of hay hole falls in this area following cover distribution

METHODS

- 10 year (2011-2021) retrospective study at our Level I Trauma Center
- All patients with hay-hole falls were included
- Data was stratified by phase: Before Cover Implementation (BC): 1/2011-12/2016 and After Cover Implementation (AC): 1/2017-12/2021
- Demographic, clinical, and outcome variables were compared those with hay-hole falls in the BC and AC phases

Characteristics	Before Cover Implementation (BC) n (%)	After Cover Implementation (AC) n (%)	P value
Incidence of Hay Hole Falls ^a	32 (0.25%)	17 (0.11%)	p<0.001
Age, mean (SD)	11.5 ± 2.8	22.4 ± 6.2	p=0.035
Male Gender	25 (78.13%)	15 (88.24%)	p=0.384
Mortality	1 (3.13%)	0 (0.00%)	p=0.461
Head Bleed	8 (25.0%)	4 (23.53%)	p=0.909
Transfer Out	17 (53.13%)	8 (47.06%)	p=0.686
Concussion	16 (50.0%)	10 (58.82%)	p=0.556
Loss of Consciousness	19 (59.38%)	11 (64.71%)	p=0.715
Facial Fracture	4 (12.50%)	2 (11.76%)	p=0.940
Skull Fracture	10 (31.25%)	5 (29.41%)	p=0.894
Lower Extremity Fracture	2 (6.25%)	1 (5.88%)	p=0.959
Upper Extremity Fracture	2 (6.25%)	2 (11.76%)	p=0.502
Spinal Fracture	3 (9.38%)	2 (11.76%)	p=0.793

Table 2. Characteristics of Hay-Hole Fall Patients Before and After Cover Implementation. ^a % based on total number of trauma patients admitted during the study time frames. (SD- standard deviation)

Table 1. Hay Hole Cover

RESULTS

- 49 patients included in the study
- 84% of these patients were members of the Anabaptist Community
- Observed a 47% decrease in the number of HHF
- Increase in average age of patients with HHF

CONCLUSIONS

- Appears that the distribution of hay-hole covers led to a significant decrease in the incidence of hay-hole falls in this area.
- The average age of patients with HHF increased in the AC phase suggesting the effectiveness of the covers for the pediatric population in particular.
- Further investigation is needed to elucidate the long-term impact of hayhole cover distribution and could be used to guide future interventions, such as another round of cover distribution or improvements in the cover design for long-term use.